• Neuroscience · Jan 2015

    Triclosan induces Fas receptor-dependent apoptosis in mouse neocortical neurons in vitro.

    • K A Szychowski, A M Sitarz, and A K Wojtowicz.
    • Department of Animal Biotechnology, Animal Sciences Faculty, University of Agriculture, Redzina 1B, 30-248 Krakow, Poland. Electronic address: konrad.szychowski@gmail.com.
    • Neuroscience. 2015 Jan 22;284:192-201.

    AbstractTriclosan (TCS) is a commonly used antimicrobial agent in personal care and sanitizing products, as well as in household items. Numerous studies have demonstrated the presence of TCS in various human tissues. Several studies have reported the accumulation of TCS in fish and human brain tissue. The aim of the present study was to investigate the effect of TCS on apoptosis in mouse neocortical neurons after 7 days of culture in vitro following 3, 6 and 24 h of exposure. To explore the mechanism underlying the effects of TCS in neurons, we studied the activation and protein expression of the Fas receptor (FasR) and caspase-8, caspase-9 and caspase-3, as well as DNA fragmentation in TCS-treated cells. Cultures of neocortical neurons were prepared from Swiss mouse embryos on day 15/16 of gestation. The cells were cultured in phenol red-free Neurobasal medium with B27 and glutamine. The cultures were treated with concentrations of TCS ranging from 1 nM to 100 μM for 3, 6 and 24 h. The level of lactate dehydrogenase (LDH) was measured in the culture medium to exclude the cytotoxic concentrations. The cytotoxic effects were only observed when the highest concentrations of TCS were used (50 and 100 μM). To study apoptosis, the activities of caspase-8, caspase-9 and caspase-3 were measured, and DNA fragmentation was evaluated. Our results are the first time to demonstrate that TCS can induce an apoptotic process in neocortical neurons in vitro. The data demonstrated that TCS caused caspase-3 activation, DNA fragmentation and apoptotic body formation. Non-cytotoxic concentrations of TCS activated the extrinsic apoptotic signaling pathway, which is dependent on FasR and caspase-8 activation. However, it is also possible that TCS may activate the intrinsic apoptotic pathway after long-term exposure. Therefore, further studies on the mechanism underlying the effects of TCS on the nervous system are needed.Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…