• Neuroscience · Jan 2004

    Comparative Study

    Neuronal expression of the drug efflux transporter P-glycoprotein in the rat hippocampus after limbic seizures.

    • H A Volk, K Burkhardt, H Potschka, J Chen, A Becker, and W Löscher.
    • Department of Pharmacology, Toxicology and Pharmacy, School of Veterinary Medicine, Bünteweg 17, D-30559, Hannover, Germany
    • Neuroscience. 2004 Jan 1; 123 (3): 751759751-9.

    AbstractIn the brain, the efflux transporter P-glycoprotein (Pgp) is predominantly located on the luminal membrane of endothelial cells lining brain microvessels and forming the blood-brain barrier. Many lipophilic drugs, including antiepileptic drugs, are potential substrates for Pgp. Overexpression of Pgp in endothelial cells of the blood-brain barrier has been determined in patients with drug resistant forms of epilepsy such as temporal lobe epilepsy and rodent models of temporal lobe epilepsy and suggested to lead to reduced penetration of antiepileptic drugs into the brain. Expression of Pgp after seizures has also been described in astrocytes, whereas it is not clear whether neurons can express Pgp. In the present study, Pgp expression was studied by immunohistochemistry in rats 24 h after a status epilepticus induced by either pilocarpine or kainate, widely used models of temporal lobe epilepsy. Unexpectedly, in addition to endothelial Pgp staining, intense Pgp staining was found in neurons in the CA3c/CA4 sectors and hilus of the hippocampus formation, but not in other brain regions examined. The neuronal Pgp staining was confirmed by two different Pgp antibodies. Double immunolabeling and confocal microscopy showed that Pgp was colocalized with the neuronal marker neuronal nuclear antigen, but not with the glial marker glial fibrillary acidic protein. No neuronal Pgp staining was seen in control rats. The expression of Pgp in neurons after limbic seizures was substantiated by determining Pgp encoding genes (mdr1a, mdr1b) in neurons by real time quantitative RT-PCR. Increased Pgp expression in hippocampal neurons is likely to affect the action of drugs with intraneuronal targets and, in view of recent evidence from other cell types, could be associated with prevention of apoptosis which is involved in neuronal damage developing after seizures such as produced by pilocarpine.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…