• Neuroscience · Dec 2013

    Response properties of local field potentials and multiunit activity in the mouse visual cortex.

    • R Land, G Engler, A Kral, and A K Engel.
    • Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of Experimental Otology, Institute of Audioneurotechnology, Hannover Medical School, 30625 Hannover, Germany. Electronic address: land.ruediger@mh-hannover.de.
    • Neuroscience. 2013 Dec 19;254:141-51.

    AbstractExtracellular local field potentials (LFPs) and multiunit activity (MUA) reflect the spatially integrated activity of multiple neurons in a given cortical structure. In the cat and primate visual cortices, these signals exhibit selectivity for visual stimulus features, such as orientation, direction of motion or spatial frequency. In the mouse visual cortex, a model which has been increasingly used in visual neuroscience, the visual stimulus selectivity of population signals has not been examined in detail. We recorded LFPs and MUA using multielectrode arrays and two derived measures, the high-pass filtered continuous MUA and the bipolar first spatial derivative of the LFP, in the visual cortex of isoflurane-anesthetized C57Bl/6 mice. We analyzed the onset latency and characterized the receptive fields in addition to the direction, orientation, and spatial and temporal frequency preferences of these signals. Population signals exhibited onset latencies as short as ∼30ms and possessed receptive fields as large as ∼38° with MUA receptive fields smaller than those of LFPs. All four population signals exhibited similar spatial frequency preferences (∼0.1 cycles per degree) and temporal frequency preferences (∼1 cycle per second). However, for all population signals, spatial and frequency tunings were broad and orientation and direction of motion preferences were absent. The characterization of the visual stimulus selectivity of LFPs and MUA in the mouse visual cortex should provide information regarding their usability in characterizing stimulus properties and disclose possible limitations.Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…