• Am. J. Physiol. · Sep 1999

    Relative contributions of endothelial, inducible, and neuronal NOS to tone in the murine pulmonary circulation.

    • K A Fagan, R C Tyler, K Sato, B W Fouty, K G Morris, P L Huang, I F McMurtry, and D M Rodman.
    • Cardiovascular Pulmonary Research Laboratory, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA. karen.fagan@uchsc.edu
    • Am. J. Physiol. 1999 Sep 1; 277 (3): L472-8.

    AbstractNitric oxide plays an important role in modulating pulmonary vascular tone. All three isoforms of nitric oxide synthase (NOS), neuronal (nNOS, NOS I), inducible (iNOS, NOS II), and endothelial (eNOS, NOS III), are expressed in the lung. Recent reports have suggested an important role for eNOS in the modulation of pulmonary vascular tone chronically; however, the relative contribution of the three isoforms to acute modulation of pulmonary vascular tone is uncertain. We therefore tested the effect of targeted disruption of each isoform on pulmonary vascular reactivity in transgenic mice. Isolated perfused mouse lungs were used to evaluate the effect of selective loss of pulmonary nNOS, iNOS, and eNOS with respect to hypoxic pulmonary vasoconstriction (HPV) and endothelium-dependent and -independent vasodilation. eNOS null mice had augmented HPV (225 +/- 65% control, P < 0.02, mean +/- SE) and absent endothelium-dependent vasodilation, whereas endothelium-independent vasodilation was preserved. HPV was minimally elevated in iNOS null mice and normal in nNOS null mice. Both nNOS and iNOS null mice had normal endothelium-dependent vasodilation. In wild-type lungs, nonselective NOS inhibition doubled HPV, whereas selective iNOS inhibition had no detectable effect. In intact, lightly sedated mice, right ventricular systolic pressure was elevated in eNOS-deficient (42.3 +/- 1.2 mmHg, P < 0.001) and, to a lesser extent, in iNOS-deficient (37.2 +/- 0.8 mmHg, P < 0.001) mice, whereas it was normal in nNOS-deficient mice (30.9 +/- 0.7 mmHg, P = not significant) compared with wild-type controls (31.3 +/- 0.7 mmHg). We conclude that in the normal murine pulmonary circulation 1) nNOS does not modulate tone, 2) eNOS-derived nitric oxide is the principle mediator of endothelium-dependent vasodilation in the pulmonary circulation, and 3) both eNOS and iNOS play a role in modulating basal tone chronically.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.