• NeuroImage · Apr 2009

    EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement.

    • Sebastian Olbrich, Christoph Mulert, Susanne Karch, Maja Trenner, Gregor Leicht, Oliver Pogarell, and Ulrich Hegerl.
    • Department of Psychiatry, University of Leipzig, Semmelweisstrasse 10, D-04103 Leipzig, Germany. Sebastian.Olbrich@medizin.uni-leipzig.de
    • Neuroimage. 2009 Apr 1; 45 (2): 319-32.

    AbstractDifferent EEG-vigilance stages from full alertness to sleep onset can be separated during rest. Also fMRI research recently focused on the resting condition and identified several resting state networks. In order to deepen the understanding of different levels of global brain function from relaxed wakefulness to sleep onset the association between EEG-vigilance stages and BOLD signals was analysed. EEG-vigilance stages were attributed to consecutive 3-sec-EEG-segments by an algorithm using topographic and spectral information. Results of the classification were validated by analysing the heart rates during the different brain states. Vigilance stages served as regressors for the analysis of the simultaneously acquired fMRI data. Additionally resting state networks were derived from the fMRI data using independent component analysis (ICA). Also vigilance associated brain activity revealed by EEG-based standardized low resolution tomography (sLORETA) was compared to the results of the fMRI analysis. Results showed increased BOLD signal in the occipital cortex, the anterior cingulate cortex, the frontal cortex, the parietal cortices and the temporal cortices and decreasing BOLD signals in the thalamus and the frontal cortex for declining vigilance stages (A2, A3, B1, B2/B3) in comparison to the high vigilance stage A1. Resting state networks revealed a spatial overlap with the vigilance stage associated BOLD maps in conjunction analyses. sLORETA showed increased neuroelectric alpha activity at the occipital cortex comparable to occipital BOLD signal decreases when comparing stage A with stage B. Different EEG-vigilance stages during rest are associated with pronounced differences of BOLD signals in several brain areas which partly correspond to the resting state networks. For cognitive fMRI-research it therefore seems important to pay attention to vigilance switches in order to separate vigilance associated BOLD signal changes from those specifically related to cognition.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…