• Osteoporos Int · Feb 2012

    Comparative Study

    QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA.

    • E Dall'Ara, D Pahr, P Varga, F Kainberger, and P Zysset.
    • Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Gußhausstrasse 27-29, 1040 Vienna, Austria. edallara@ilsb.tuwien.ac.at
    • Osteoporos Int. 2012 Feb 1; 23 (2): 563-72.

    SummaryWhile dual energy X-ray absorptiometry (DXA) is considered the gold standard to evaluate fracture risk in vivo, in the present study, the quantitative computed tomography (QCT)-based finite element modeling has been found to provide a quantitative and significantly improved prediction of vertebral strength in vitro. This technique might be used in vivo considering however the much larger doses of radiation needed for QCT.IntroductionVertebral fracture is a common medical problem in osteoporotic individuals. Bone mineral density (BMD) is the gold standard measure to evaluate fracture risk in vivo. QCT-based finite element (FE) modeling is an engineering method to predict vertebral strength. The aim of this study was to compare the ability of FE and clinical diagnostic tools to predict vertebral strength in vitro using an improved testing protocol.MethodsThirty-seven vertebral sections were scanned with QCT and high resolution peripheral QCT (HR-pQCT). Bone mineral content (BMC), total BMD (tBMD), areal BMD from lateral (aBMD-lat), and anterior-posterior (aBMD-ap) projections were evaluated for both resolutions. Wedge-shaped fractures were then induced in each specimen with a novel testing setup. Nonlinear homogenized FE models (hFE) and linear micro-FE (μFE) were generated from QCT and HR-pQCT images, respectively. For experiments and models, both structural properties (stiffness, ultimate load) and material properties (apparent modulus and strength) were computed and compared.ResultsBoth hFE and μFE models predicted material properties better than structural ones and predicted strength significantly better than aBMD computed from QCT and HR-pQCT (hFE: R² = 0.79, μFE: R² = 0.88, aBMD-ap: R² = 0.48-0.47, aBMD-lat: R² = 0.41-0.43). Moreover, the hFE provided reasonable quantitative estimations of the experimental mechanical properties without fitting the model parameters.ConclusionsThe QCT-based hFE method provides a quantitative and significantly improved prediction of vertebral strength in vitro when compared to simulated DXA. This superior predictive power needs to be verified for loading conditions that simulate even more the in vivo case for human vertebrae.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.