• Neuroscience · Jun 2020

    Enhanced susceptibility of PINK1 knockout rats to α-synuclein fibrils.

    • Rose B Creed and Matthew S Goldberg.
    • Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, United States.
    • Neuroscience. 2020 Jun 15; 437: 64-75.

    AbstractThe main neuropathological hallmarks of Parkinson's disease (PD) are loss of dopaminergic neurons in the substantia nigra and intraneuronal protein aggregates immunoreactive for α-synuclein phosphorylated at serine 129 (pS129). Most cases of PD are idiopathic; however, genetic mutations have been identified in several genes linked to familial PD. Mutations in the gene encoding α-synuclein are causally linked to dominantly inherited forms of PD and mutations in the PTEN-induced kinase-1 (PINK1) gene are linked to recessively inherited forms of PD. Because abnormal α-synuclein protein aggregates appear spontaneously in PINK1 knockout (KO) rats, we hypothesize that PINK1-deficiency causes endogenous α-synuclein to be more prone to aggregation. α-Synuclein aggregation does not normally occur in mice or rats, however, it can be induced by intracranial injection of α-synuclein pre-formed fibrils (PFFs), which also induces loss of dopaminergic nigral neurons 3-6 months post-injection. Because PINK1-deficiency is linked to early-onset PD, we further hypothesize that PINK1 KO rats will show earlier PFF-induced neurodegeneration compared to wild-type (WT) rats. Herein, we report that intracranial injection of α-synuclein PFFs into the dorsal striatum induced more abundant pS129 α-synuclein in PINK1 KO rat brains compared to WT littermate controls. Moreover, the synuclein extracted from the brains of PFF-injected PINK1 KO rats was more insoluble compared to PFF-injected WT littermates, suggesting greater progression of α-synuclein pathology in PINK1 KO rats. Four weeks post-injection, PFFs caused significant loss of dopaminergic neurons in the substantia nigra of PINK1 KO rats, but not WT controls. Together, our results indicate that PINK1 deficiency increases vulnerability to α-synuclein aggregation and dopaminergic neurodegeneration in vivo.Copyright © 2020 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.