• Nutrition · Sep 2020

    Energy metabolism profile of the effects of amino acid treatment on skeletal muscle cells: Leucine inhibits glycolysis of myotubes.

    • Reiko Suzuki, Yoriko Sato, Kodwo Amuzuah Obeng, Daisuke Suzuki, Yusuke Komiya, Shin-Ichi Adachi, Fumiaki Yoshizawa, and Yusuke Sato.
    • Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan.
    • Nutrition. 2020 Sep 1; 77: 110794.

    ObjectivesAmino acids are not only components of proteins, but also can be metabolized to energy substances or be used as signaling molecules. However, basic knowledge of the relationship between amino acid treatment and energy metabolism is still insufficient. The aims of this study was to profile the effects of essential amino acid and alanine treatment on the energy metabolism of both myoblasts and myotubes and to contribute to the understanding of the basic relationship between amino acid treatment and energy metabolism of skeletal muscle cell.MethodsWe profiled whether amino acid (essential amino acids and alanine) treatment can affect the energy metabolism (glycolysis, mitochondrial respiration) of cultured skeletal muscle cells. C2C12 myoblasts and differentiated myotubes were treated with 5 mM each amino acid for 1 h, then the energy metabolism was measured by using extracellular flux analyzer.ResultsAlthough not all of the amino acid treatments could affect the energy metabolism of C2C12 myoblasts, leucine, isoleucine, lysine, phenylalanine, and histidine decreased the extracellular acidification rate, an indirect indicator of glycolysis, in differentiated myotubes without alteration of oxygen consumption rate, an indirect indicator of mitochondrial respiration. By glycolysis stress test, we found that leucine treatment inhibited glycolysis of myotubes when the substrate of glycolysis is sufficient in cultured media. The inhibitory effect of glycolysis by leucine was not canceled by rapamycin (an inhibitor for mTOR). But, 3,6-dichlorobenzo[b]thiophene-2-carboxylic acid (an inhibitor for branched-chain α ketoacid dehydrogenase complex kinase) increased branched-chain amino acid catabolism, which decreased the glycolysis of myotubes.ConclusionFindings from the present study complemented the basic knowledge of amino acid treatment on the energy metabolism of cultured skeletal muscle cells and suggested the inhibitory effects of glycolysis by branched-chain amino acid catabolism.Copyright © 2020 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.