-
- Niklas Marklund.
- Division of Neurosurgery, Department of Neuroscience, Uppsala University Hospital, Uppsala University, Uppsala, 751 85, Sweden. Niklas.Marklund@neuro.uu.se.
- Methods Mol. Biol. 2016 Jan 1; 1462: 29-46.
AbstractTraumatic brain injury (TBI) has been named the most complex disease in the most complex organ of the body. It is the most common cause of death and disability in the Western world in people <40 years old and survivors commonly suffer from persisting cognitive deficits, impaired motor function, depression and personality changes. TBI may vary in severity from uniformly fatal to mild injuries with rapidly resolving symptoms and without doubt, it is a markedly heterogeneous disease. Its different subtypes differs in their pathophysiology, treatment options and long-term consequences and to date, there are no pharmacological treatments with proven clinical benefit available to TBI patients. To enable development of novel treatment options for TBI, clinically relevant animal models are needed. Due to their availability and low costs, numerous rodent models have been developed which have substantially contributed to our current understanding of the pathophysiology of TBI. The most common animal models used in laboratories worldwide are likely the controlled cortical impact (CCI) model, the central and lateral fluid percussion injury (FPI) models, and weight drop/impact acceleration (I/A) models. Each of these models has inherent advantages and disadvantages; these need to be thoroughly considered when selecting the rodent TBI model according to the hypothesis and design of the study. Since TBI is not one disease, refined animal models must take into account the clinical features and complexity of human TBI. To enhance the possibility of establishing preclinical efficacy of a novel treatment, the preclinical use of several different experimental models is encouraged as well as varying the species, gender, and age of the animal. In this chapter, the methods, limitations, and challenges of the CCI and FPI models of TBI used in rodents are described.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.