Translational research : the journal of laboratory and clinical medicine
-
Development of optimal SARS-CoV-2 vaccines to induce potent, long-lasting immunity and provide cross-reactive protection against emerging variants remains a high priority. Here, we report that a modified porous silicon microparticle (mPSM) adjuvant to SARS-CoV-2 receptor-binding domain (RBD) vaccine activated dendritic cells and generated more potent and durable systemic humoral and type 1 helper T (Th) cell- mediated immune responses than alum-formulated RBD following parenteral vaccination, and protected mice from SARS-CoV-2 and Beta variant challenge. ⋯ Parenteral and intranasal prime and boost vaccinations with mPSM-RBD elicited stronger lung resident T and B cells and IgA responses compared to parenteral vaccination alone, which led to markedly diminished viral loads and inflammation in the lung following SARS-CoV-2 Delta variant challenge. Overall, our results suggest that mPSM is effective adjuvant for SARS-CoV-2 subunit vaccine in both systemic and mucosal vaccinations.
-
Despite progress in prevention and treatment, colorectal cancer (CRC) remains the third most common malignancy worldwide and the second most common cause of cancer death in 2020. To evaluate various characteristics of human CRC, a variety of mouse models have been established. Transplant mouse models have distinct advantages in studying the clinical behavior and therapeutic progress of CRC. ⋯ These milestone events have allowed for great progress in tumor biology and the treatment of CRC. This article reviews the evolution of these events and points out their strengths and weaknesses as innovative and useful preclinical tools to study CRC progression and metastasis and to exploit novel treatment schedules by establishing a testing platform. This review article depicts the optimal transplanted CRC mouse models and emphasizes the significance of surgical models in the study of CRC behavior and treatment response.
-
Clear cell renal cell carcinoma (ccRCC) is highly prone to metastasize and displays an extremely low 5-year survival rate. Not only miRNAs (miRs) are key gene expression regulators but can also be epigenetically modified. Abnormal miR expression has been linked with epithelial-mesenchymal transition (EMT)-driven ccRCC progression. ⋯ Importantly, we confirmed TWF1 as a direct target of both miRs, and its potential involvement in epithelial-mesenchymal transition/mesenchymal-epithelial transition regulation. IHC analysis revealed higher TWF1 expression in primary tissues from patients that developed metastases, after surgical treatment. Our results implicate miR-30a/c-5p in ccRCC cells' aggressiveness attenuation by directly targeting TWF1 and hampering EMT.
-
During the progression of diabetic kidney disease (DKD), renal lactate metabolism is rewired. The relationship between alterations in renal lactate metabolism and renal fibrosis in patients with diabetes has only been partially established due to a lack of biopsy tissues from patients with DKD and the intricate mechanism of lactate homeostasis. The role of lactate dehydrogenase A (LDHA)-mediated lactate generation in renal fibrosis and dysfunction in human and animal models of DKD was explored in this study. ⋯ We found that the pathogenesis of DKD is linked to hypoxia-mediated lactic acidosis, which leads to fibrosis and mitochondrial abnormalities. The pathogenic characteristics of DKD were significantly reduced when aerobic glycolysis or LDHA expression was inhibited. Further studies will aim to investigate whether local acidosis caused by renal LDHA might be exploited as a therapeutic target in patients with DKD.
-
Chronic oxidative stress, which is caused by aberrant non-receptor tyrosine kinase (c-Abl) signaling, plays a key role in the progression of β-cell loss in diabetes mellitus. Recent studies, however, have linked ferroptotic-like death to the β-cell loss in diabetes mellitus. Here, we report that oxidative stress-driven reduced/oxidized glutathione (GSH/GSSG) loss and proteasomal degradation of glutathione peroxidase 4 (GPX4) promote ferroptotic-like cell damage through increased lipid peroxidation. ⋯ Inhibition of GLS1 suppresses the ERRγ agonist DY131-induced GSH/GSSG ratio linked to ferroptotic-like death owing to the loss of GPX4. Furthermore, immunohistochemical analysis showed enhanced ERRγ and GPX4 expression in the pancreatic islets of GNF2-treated mice compared to that in streptozotocin-treated mice. Altogether, our results provide the first evidence that the orphan nuclear receptor ERRγ-induced GLS1 expression augments the glutathione antioxidant system, and its downstream signaling leads to improved β-cell function and survival under oxidative stress conditions.