Translational research : the journal of laboratory and clinical medicine
-
Despite progress in prevention and treatment, colorectal cancer (CRC) remains the third most common malignancy worldwide and the second most common cause of cancer death in 2020. To evaluate various characteristics of human CRC, a variety of mouse models have been established. Transplant mouse models have distinct advantages in studying the clinical behavior and therapeutic progress of CRC. ⋯ These milestone events have allowed for great progress in tumor biology and the treatment of CRC. This article reviews the evolution of these events and points out their strengths and weaknesses as innovative and useful preclinical tools to study CRC progression and metastasis and to exploit novel treatment schedules by establishing a testing platform. This review article depicts the optimal transplanted CRC mouse models and emphasizes the significance of surgical models in the study of CRC behavior and treatment response.
-
Development of optimal SARS-CoV-2 vaccines to induce potent, long-lasting immunity and provide cross-reactive protection against emerging variants remains a high priority. Here, we report that a modified porous silicon microparticle (mPSM) adjuvant to SARS-CoV-2 receptor-binding domain (RBD) vaccine activated dendritic cells and generated more potent and durable systemic humoral and type 1 helper T (Th) cell- mediated immune responses than alum-formulated RBD following parenteral vaccination, and protected mice from SARS-CoV-2 and Beta variant challenge. ⋯ Parenteral and intranasal prime and boost vaccinations with mPSM-RBD elicited stronger lung resident T and B cells and IgA responses compared to parenteral vaccination alone, which led to markedly diminished viral loads and inflammation in the lung following SARS-CoV-2 Delta variant challenge. Overall, our results suggest that mPSM is effective adjuvant for SARS-CoV-2 subunit vaccine in both systemic and mucosal vaccinations.
-
Chronic oxidative stress, which is caused by aberrant non-receptor tyrosine kinase (c-Abl) signaling, plays a key role in the progression of β-cell loss in diabetes mellitus. Recent studies, however, have linked ferroptotic-like death to the β-cell loss in diabetes mellitus. Here, we report that oxidative stress-driven reduced/oxidized glutathione (GSH/GSSG) loss and proteasomal degradation of glutathione peroxidase 4 (GPX4) promote ferroptotic-like cell damage through increased lipid peroxidation. ⋯ Inhibition of GLS1 suppresses the ERRγ agonist DY131-induced GSH/GSSG ratio linked to ferroptotic-like death owing to the loss of GPX4. Furthermore, immunohistochemical analysis showed enhanced ERRγ and GPX4 expression in the pancreatic islets of GNF2-treated mice compared to that in streptozotocin-treated mice. Altogether, our results provide the first evidence that the orphan nuclear receptor ERRγ-induced GLS1 expression augments the glutathione antioxidant system, and its downstream signaling leads to improved β-cell function and survival under oxidative stress conditions.
-
Patients with sickle cell disease (SCD) have ongoing hemolysis that promotes endothelial injury, complement activation, inflammation, vaso-occlusion, ischemia-reperfusion pathophysiology, and pain. Complement activation markers are increased in SCD in steady-state and further increased during vaso-occlusive crisis (VOC). However, the mechanisms driving complement activation in SCD have not been completely elucidated. ⋯ Importantly, MASP-2 or MASP-3 mAb pretreatment significantly inhibited microvascular stasis (vaso-occlusion) induced by hypoxia-reoxygenation or hemoglobin. These studies suggest that the LP and the AP are both playing a role in promoting inflammation and vaso-occlusion in SCD. Inhibiting complement activation via the LP or the AP might inhibit inflammation and prevent VOC in SCD patients.
-
As an anti-inflammatory strategy, MAPK-activated protein kinase-2 (MK2) inhibition can potentially avoid the clinical failures seen for direct p38 inhibitors, especially tachyphylaxis. CC-99677, a selective targeted covalent MK2 inhibitor, employs a rare chloropyrimidine that bonds to the sulfur of cysteine 140 in the ATP binding site via a nucleophilic aromatic substitutions (SNAr) mechanism. This irreversible mechanism translates biochemical potency to cells shown by potent inhibition of heat shock protein 27 (HSP27) phosphorylation in LPS-activated monocytic THP-1 cells. ⋯ Dosed orally, CC-99677 is efficacious in a rat model of ankylosing spondylitis. Single doses, 3 to 400 mg, in healthy human volunteers show linear pharmacokinetics and apparent sustained tumor necrosis factor-α inhibition, with a favorable safety profile. These results support further development of CC-99677 for autoimmune diseases like ankylosing spondylitis.