Pain
-
Randomized Controlled Trial Clinical Trial
Affective pictures processing, attention, and pain tolerance.
Two experiments were conducted to determine whether attention mediates the effects of affective distractors on cold pressor pain, or whether the cognitive processes of priming and appraisal best account for the effects. In Experiment I, 65 male respondents were exposed to either pleasant, neutral or unpleasant pictures selected from the International Affective Pictures System (IAPS). The cold-pressor test was administered simultaneously. ⋯ Thirty-nine male respondents were exposed to unpleasant pictures that either did or did not include pain-related material. Respondents who viewed pictures without pain cues tolerated the cold water for a longer period of time than respondents who viewed pictures that contained pain-related information. Priming and appraisal processes that might underlie the observed differences, and the type of affective distractors that could be meaningful for enhancing pain tolerance, are discussed.
-
This study investigated the antinociceptive effect of opioids given via intraperitoneal and intrathecal routes in a diabetes-induced neuropathic pain model in rats. Streptozotocin induced diabetes in 91% of juvenile male Wistar rats at the dose of 150 mg/kg (75 mg/kg intraperitoneal on 2 successive days). When compared with younger weight-matched saline treated rats, the diabetic rats developed hyperalgesia assessed by the paw pressure nociceptive test. ⋯ Intrathecal injections of fentanyl (0.05-0.5 microg) in non-neuropathic rats, produced a spinally-mediated, dose-related antinociceptive effect assessed by all tests. In contrast, intrathecal administration of fentanyl that confined the drug action to the spinal cord produced little antinociceptive effect in neuropathic rats in all three tests. These experiments suggest that supraspinal mu opioid receptors are responsible for the antinociceptive effect of opioids in this model of neuropathic pain and that spinal cord opioid systems are in some way rendered ineffective for antinociception assessed with noxious heat, electrical and pressure stimuli.
-
Excitotoxic spinal cord injury (SCI) causes anatomic, physiologic and molecular changes within the spinal cord and brain. Intraspinal injection of quisqualic acid (QUIS) produces an excitotoxic injury that leads to the onset of behavioral syndromes, believed to be related to the clinical condition of chronic pain. The opioid system, classically involved in the suppression of pain transmission, has been associated with the onset of pain-related behaviors and changes in spinal opioid peptide expression have been demonstrated in various models of SCI and chronic pain. ⋯ In addition, PPE expression in the anterior cingulate cortex and PPD expression in the contralateral parietal cortex were significantly higher in grooming vs. non-grooming animals. These results support previous conclusions that both spinal and supraspinal regulation of endogenous opioid peptide expression plays a role in the response to or onset of post-SCI pain. These results also suggest that the opioid peptides are regulated independently and serve different functions in response to SCI.
-
Randomized Controlled Trial Clinical Trial
Heat, but not mechanical hyperalgesia, following adrenergic injections in normal human skin.
The development of adrenergic sensitivity in nociceptors has been suggested as a mechanism of neuropathic pain. We sought to determine if nociceptors in the skin of normal subjects exhibit adrenergic sensitivity. We investigated the effects of intradermal administration of norepinephrine, phenylephrine, and brimonidine on heat pain sensitivity. ⋯ In addition, occlusion of blood flow with a blood pressure cuff did not lead to heat hyperalgesia. Thus, the heat hyperalgesia observed with the adrenergic agonists is not due to a decrease in perfusion associated with the injection. These results indicate that alpha(1)- and alpha(2)-adrenoceptor-mediated mechanisms may play a role in sensitization of nociceptors to heat stimuli in normal skin.
-
Randomized Controlled Trial Clinical Trial
A cognitive-behavioral group intervention as prevention for persistent neck and back pain in a non-patient population: a randomized controlled trial.
Given the demand for interventions that may prevent the development of persistent musculoskeletal pain problems, we investigated the effects of a cognitive-behavioral program in a group of non-patients with neck or back pain symptoms. Two hundred and fifty-three people selected from a population study were invited to participate. These people had experienced four or more episodes of relatively intense spinal pain during the past year but had not been out of work more than 30 days. ⋯ Group comparisons indicated that the cognitive-behavioral group, relative to the comparison group, had significantly better results with regard to fear-avoidance beliefs, number of pain-free days, as well as the key variable of sick leave. Participation in the cognitive behavioral group reduced the risk for long-term sick leave during the follow-up by threefold. Thus, despite the strong natural recovery rate for back pain, the cognitive-behavioral intervention produced a significant preventive effect with regard to disability.