Pain
-
Inflammatory hyperalgesia is a complex process that depends on the sensitization of primary nociceptive neurons triggered by proinflammatory mediators, such as interleukin 1β (IL-1β). Recently, the peripheral activation of caspase-1 (previously known as IL-1β-converting enzyme) was implicated in the induction of acute inflammatory pain by promoting the processing of IL-1β from its precursor form, pro-IL-1β. Caspase-1 activation in several systems requires the assembly of an intracellular molecular platform called an inflammasome. ⋯ The reduced hyperalgesia was accompanied by significant impairments in the levels of mature forms of IL-1β (p17) and caspase-1 (p20) compared to wild-type mice at the inflammatory site. Therefore, these results identified the inflammasome components NLRC4 and ASC as the molecular platform involved in the peripheral activation of caspase-1 and IL-1β maturation, which are responsible for the induction of acute inflammatory pain. In conclusion, our study provides new therapeutic targets for the control of acute inflammatory pain.
-
Sensory nerve fibers innervating the ocular anterior surface detect external stimuli producing innocuous and painful sensations. Protons are among the first mediators released by damaged cells during inflammation, tissue injury, or other chronic ophthalmic conditions. We studied whether acid-sensing ion channels (ASICs) are expressed in corneal sensory neurons and their roles in the response to moderate acidifications of the ocular surface and in pathologies producing ocular surface inflammation. ⋯ Our results show that, in addition to the established role of TRPV1, ASICs play a significant role in the detection of acidic insults at the ocular surface. The identification of ASICs in corneal neurons and their alterations during different diseases is critical for the understanding of sensory ocular pathophysiology. They are likely to mediate some of the discomfort sensations accompanying several ophthalmic formulations and may represent novel targets for the development of new therapeutics for ocular pathologies.
-
Persistent peripheral inflammation alters trafficking of AMPA receptors (AMPARs) at the synapses between primary afferents and dorsal horn (DH) neurons that contribute to the maintenance of inflammatory pain. However, whether peripheral inflammation changes the synaptic activity within the DH circuitry and how it modulates synaptic AMPARs in different neuronal types still remain unknown. ⋯ Synaptic AMPARs were differentially changed in the adapting firing and the tonic firing neurons, implying different mechanisms of AMPAR adjustment at the synapses in these types of interneurons during persistent inflammation. The inflammatory-induced, neuron-type specific changes in synaptic drive within the DH circuitry and synaptic AMPAR functioning in lamina II neurons may contribute to the persistent pain maintenance.
-
Endometriosis is a disease characterized by the growth of endometrial tissue outside the uterus and is associated with chronic pelvic pain. Peritoneal fluid (PF) of women with endometriosis is a dynamic milieu and is rich in inflammatory markers, pain-inducing prostaglandins prostaglandin E2 and prostaglandin F2α, and lipid peroxides; and the endometriotic tissue is innervated with nociceptors. Our clinical study showed that the abundance of oxidatively modified lipoproteins in the PF of women with endometriosis and the ability of antioxidant supplementation to alleviate endometriosis-associated pain. ⋯ Antioxidants, vitamin E and N-acetylcysteine, and the nonsteroidal anti-inflammatory drug indomethacin suppressed the pain-inducing ability of oxidatively modified lipoproteins. Treatment of human endometrial cells with oxidatively modified lipoproteins or PF from women with endometriosis showed upregulation of similar genes belonging to opioid and inflammatory pathways. Our finding that oxidatively modified lipoproteins can induce nociception has a broader impact not only on the treatment of endometriosis-associated pain but also on other diseases associated with chronic pain.
-
Chronic widespread pain is a serious medical problem, yet the mechanisms of nociception and pain are poorly understood. Using a reserpine-induced pain model originally reported as a putative animal model for fibromyalgia, this study was undertaken to examine the following: (1) expression of several ion channels responsible for pain, mechanotransduction, and generation/propagation of action potentials in the dorsal root ganglion (DRG), (2) activities of peripheral nociceptive afferents, and (3) alterations in spinal microglial cells. A significant increase in mRNA expression of the acid-sensing ion channel (ASIC)-3 was detected in the DRG, and the behavioral mechanical hyperalgesia was significantly reversed by subcutaneous injection of APETx2, a selective blocker of ASIC3. ⋯ The activated microglia and behavioral hyperalgesia were significantly tranquilized by intraperitoneal injection of minocycline. These results suggest that the increase in ASIC3 in the DRG facilitated mechanical response of the remaining C-nociceptors and that activated spinal microglia may direct to intensify pain in this model. Pain may be further amplified by reserpine-induced dysfunction of the descending pain inhibitory system and by the decrease in peripheral drive to this system resulting from a reduced proportion of mechanoresponsive C-nociceptors.