Pain
-
Unlike most classical analgesics, botulinum toxin type A (BoNT/A) does not alter acute nociceptive thresholds, and shows selectivity primarily for allodynic and hyperalgesic responses in certain pain conditions. We hypothesized that this phenomenon might be explained by characterizing the sensory neurons targeted by BoNT/A in the central nervous system after its axonal transport. BoNT/A's central antinociceptive activity following its application into the rat whisker pad was examined in trigeminal nucleus caudalis (TNC) and higher-level nociceptive brain areas using BoNT/A-cleaved synaptosomal-associated protein 25 (SNAP-25) and c-Fos immunohistochemistry. ⋯ BoNT/A reduced the c-Fos activation in TNC, locus coeruleus, and periaqueductal gray. Present experiments suggest that BoNT/A alters the nociceptive transmission at the central synapse of primary afferents. Targeting of TRPV1-expressing neurons might be associated with observed selectivity of BoNT/A action only in certain types of pain.
-
We describe a young woman who had had treatment-refractory complex regional pain syndrome (CRPS) for 6 years before receiving antibiotic treatment with cefadroxil (a cephalosporin derivative) for a minor infection. Cefadroxil reduced the patient's pain and motor dysfunction (dystonia and impaired voluntary movement) within days; the pain and motor disorder returned when cefadroxil was discontinued; and both again abated when cefadroxil was re-instituted. The patient has now had symptom relief for more than 3 years on continuing cefadroxil therapy. We discuss this case in the context of previous reports of antibiotic treatment relieving neuropathic pain in experimental animals.