Pain
-
To elucidate the mechanisms of antinociception mediated by the dopaminergic descending pathway in the spinal cord, we investigated the actions of dopamine (DA) on substantia gelatinosa (SG) neurons by in vivo whole-cell patch-clamp methods. In the voltage-clamp mode (V(H)=-70mV), the application of DA induced outward currents in about 70% of SG neurons tested. DA-induced outward current was observed in the presence of either Na(+) channel blocker, tetrodotoxin (TTX) or a non-NMDA receptor antagonist, CNQX, and was inhibited by either GDP-β-S in the pipette solution or by perfusion of a non-selective K(+) channel blocker, Ba(2+). ⋯ We showed that DA produced direct inhibitory effects in SG neurons to both noxious and innocuous stimuli to the skin. Furthermore, electrical stimulation of dopaminergic diencephalic spinal neurons (A11), which project to the spinal cord, induced outward current and suppressed the frequency and amplitude of EPSCs. We conclude that the dopaminergic descending pathway has an antinociceptive effect via D2-like receptors on SG neurons in the spinal cord.