Neuroscience
-
Comparative Study
T lymphocytes play a role in neuropathic pain following peripheral nerve injury in rats.
A catastrophic consequence of peripheral nerve injury is the development of abnormal, chronic neuropathic pain. The inflammatory response at the injury site is believed to contribute to the generation and maintenance of such persistent pain. However, the physiological significance and potential contribution of T cells to neuropathic pain remains unclear. ⋯ In contrast, passive transfer of polarized type 2 T cells, which produce anti-inflammatory cytokines, into heterozygous rats modestly though significantly attenuated their pain hypersensitivity. Thus, injection of type 1 and type 2 T-cell subsets produces opposing effects on neuropathic pain. These findings suggest the modulation of the T-cell immune response as a potential target for the treatment of neuropathic pain.
-
Previous studies have established the usefulness of endothelin-1 (ET-1) for the production of focal cerebral ischemia. The present study assessed the behavioral effects of focal ET-1-induced lesions of the sensorimotor cortex (SMC) in adult rats as well as cellular and structural changes in the contralateral homotopic motor cortex at early (2 days) and later (14 days) post-lesion time points. ET-1 lesions resulted in somatosensory and postural-motor impairments in the contralateral (to the lesion) forelimb as assessed on a battery of sensitive measures of sensorimotor function. ⋯ In comparison to sham-operated rats, in layer V of the motor cortex opposite the lesions, there were time- and laminar-dependent increases in the surface density of dendritic processes immunoreactive for microtubule-associated protein 2, in the optical density of N-methyl-D-asparate receptor (NMDA) subunit 1 immunoreactivity, and in the numerical density of cells immunolabeled for Fos, the protein product of the immediate early gene c-fos. These findings corroborate and extend previous findings of the effects of electrolytic lesions of the SMC. It is likely that compensatory forelimb behavioral changes and transcallosal degeneration play important roles in these changes in the cortex opposite the lesion, similar to previously reported effects of electrolytic SMC lesions.
-
Following nerve injury in neonatal rats, a large proportion of motoneurons die, possibly as a consequence of an increase in vulnerability to the excitotoxic effects of glutamate. Calcium-dependent glutamate excitotoxicity is thought to play a significant role not only in injury-induced motoneuron death, but also in motoneuron degeneration in diseases such as amyotrophic lateral sclerosis (ALS). Motoneurons are particularly vulnerable to calcium influx following glutamate receptor activation, as they lack a number of calcium binding proteins, such as calbindin-D(28k) and parvalbumin. ⋯ M.; n=4) in parvalbumin over-expressing mice. Surprisingly, this dramatic increase in motoneuron survival was not reflected in a significant improvement in muscle function, since 8 weeks after injury there was no improvement in either maximal twitch and tetanic force, or muscle weights. Thus, inducing spinal motoneurons to express parvalbumin protects a large proportion of motoneurons from injury-induced cell death, but this is not sufficient to restore muscle function.
-
Comparative Study
A possible role of tryptase in angiogenesis in the brain of mdx mouse, a model of Duchenne muscular dystrophy.
Duchenne muscular dystrophy (DMD) is characterized by muscle degeneration and affects the CNS. Dystrophin is absent in muscle and CNS of both DMD patients and mdx mouse, a model of DMD. ⋯ Tryptase, contained in the MC granules, stimulates angiogenesis in vitro and in vivo. We demonstrated for the first time a correlation between the extent of angiogenesis and the number of tryptase-positive neurons and microvessels and suggest that the tryptase contained in the neurons and in the endothelial cells of the mdx mouse brain may be involved in the regulation of angiogenesis taking place in mdx mouse.
-
It was previously shown that tyrosine hydroxylase (TH) immunoreactivity in the terminals of the lateral efferents of the cochlea is decreased by acoustic trauma and that sound preconditioning counteracted this decrease [Hear Res 174 (2002) 124]. Here we identify those neurons in the lateral olivocochlear system (LOC) in the brainstem that regulates the peripheral expression of TH in the cochlea. By employing retrograde tracing techniques, dextran-labeled neurons were found predominantly in the ipsilateral LOC system including lateral superior olive (LSO), and the surrounding periolivary regions (dorsal periolivary nucleus [DPO], dorsolateral periolivary nucleus [DLPO], lateral nucleus of trapezoid body [LNTB]). ⋯ Sound conditioning protected against the decrease of TH immunolabeling by acoustic trauma and increased the fiber staining for TH in the LSO and DLPO, but not in the DPO or the LNTB. These results provide evidence that TH positive neurons are present in the LOC system in the guinea-pig. It is now demonstrated that protection against acoustic trauma by sound conditioning has a central component that is governed by TH in the LSO and the surrounding periolivary DLPO region.