Neuroscience
-
The corticotropin-releasing factor (CRF)-producing neurons of the amygdala have been implicated in behavioral and physiological responses associated with fear, anxiety, stress, food intake and reward. To overcome the difficulties in identifying CRF neurons within the amygdala, a novel transgenic mouse line, in which the humanized recombinant Renilla reniformis green fluorescent protein (hrGFP) is under the control of the CRF promoter (CRF-hrGFP mice), was developed. First, the CRF-hrGFP mouse model was validated and the localization of CRF neurons within the amygdala was systematically mapped. ⋯ C-Fos induction was observed in CRF neurons of CRF-hrGFP mice exposed to an acute social defeat stress event, a fasting/refeeding paradigm or lipopolysaccharide (LPS) administration. In contrast, no c-Fos induction was detected in CRF neurons of CRF-hrGFP mice exposed to restraint stress, forced swimming test, 48-h fasting, acute high-fat diet (HFD) consumption, intermittent HFD consumption, ad libitum HFD consumption, HFD withdrawal, conditioned HFD aversion, ghrelin administration or melanocortin 4 receptor agonist administration. Thus, this study fully characterizes the distribution of amygdala CRF neurons in mice and suggests that they are involved in some, but not all, stress or food intake-related behaviors recruiting the amygdala.
-
Melanin-concentrating hormone [MCH] is a neuropeptide that modulates several behaviors, such as feeding and reward. Because the hedonic and rewarding features of a food also influence feeding behavior, the nucleus accumbens [Acb] has been highlighted as a key area integrating these roles. Functional data confirm that MCH acts on a subdivision of the Acb; however, considering the importance of finding anatomical and neurochemical data that correlate the previously demonstrated function of MCH, we delineated this investigation based on the following points: (1) Is there a pattern of innervation by MCH fibers regarding the subregions within the Acb? (2) Specifically, which hypothalamic nuclei synthesize MCH and innervate the Acb? (3) Finally, what are the neurochemical identities of the accumbal neurons innervated by MCH inputs? We examined the MCH immunoreactivity [MCH-ir] in the Acb in rat brains using the peroxidase technique. ⋯ Moreover, the IHy has the highest relationship between double/single retrogradely labeled cells [n=5.33±0.66/16±0.93, i.e. 33.33%] in the whole hypothalamus. Furthermore, our data suggest that MCH-ir fibers are in apposition to GABAergic and cholinergic cells in the AcbSh. Therefore, we provide anatomical support to the ongoing functional studies investigating the relation among the hypothalamus, MCH transmission into the Acb and the involvement of known neuronal phenotypes within the AcbSh.
-
Hemifacial spasm (HFS) is a peripheral nerve disorder which impacts the living quality of patients both psychologically and physically. Whether HFS has structural changes under these specific stressors including psychological and physiological conditions in the CNS remains largely unknown. In the current study, voxel-based morphometry (VBM) was used to evaluate changes in gray matter (GM) by using T1-weighted imaging in 25 HFS patients and 25 demographically similar healthy volunteers. ⋯ Additionally, the GM volume changes in the amygdala did not exhibit any significant between-group differences with HAMA and HAMD scores as covariates. Our results suggested that HFS probably led to GM volume abnormalities of the CNS. We indicated that the GM volume changes of the amygdala may be highly related to emotional factors.
-
Oxidative stress and the production of reactive oxygen radicals play a key role in neuronal cell damage. This paper describes an in vitro study that explores the neuronal responses to oxidative stress focusing on changes in neuronal excitability and functional membrane properties. This study was carried out in pyramidal cells of the motor cortex by applying whole-cell patch-clamp techniques on brain slices from young adult rats. ⋯ Most of the neurons, however, kept their repetitive discharge even though their maximum frequency and gain decreased. Furthermore, cancelation of the repetitive firing discharge took place at intensities that decreased with time of exposure to CH, which resulted in a narrower working range. We can conclude that oxidative stress compromises both neuronal excitability and the capability of generating action potentials, and so this type of neuronal functional failure could precede the neuronal death characteristics of many neurodegenerative diseases.
-
Serotonin (5-HT) and norepinephrine (NE) have been implicated in the mediation of endogenous analgesic mechanisms via the descending inhibitory pain pathway in the brain, and dysfunction in both the 5-HT and NE systems has been suggested as an etiology of fibromyalgia (FM). Given that 5-HT reuptake inhibition in the brain appears to be associated with pain reduction, this mechanism might exert an analgesic effect also on pain associated with FM. In this case, it would be of interest to investigate the correlation of 5-HT transporter (SERT) occupancy with in vivo analgesic effect on pain associated with FM. ⋯ This finding concerning the precise correlation of SERT occupancy with in vivo analgesic effect on pain associated with FM is reported here for the first time. SERT occupancy level above 70% was necessary for AS1069562 and duloxetine to exert significant analgesic effects on muscular pain. These results suggest that SERT occupancy level is useful in determining appropriate analgesic doses of AS1069562 and duloxetine for treating pain symptoms in FM patients.