Neuroscience
-
Oxidative stress and the production of reactive oxygen radicals play a key role in neuronal cell damage. This paper describes an in vitro study that explores the neuronal responses to oxidative stress focusing on changes in neuronal excitability and functional membrane properties. This study was carried out in pyramidal cells of the motor cortex by applying whole-cell patch-clamp techniques on brain slices from young adult rats. ⋯ Most of the neurons, however, kept their repetitive discharge even though their maximum frequency and gain decreased. Furthermore, cancelation of the repetitive firing discharge took place at intensities that decreased with time of exposure to CH, which resulted in a narrower working range. We can conclude that oxidative stress compromises both neuronal excitability and the capability of generating action potentials, and so this type of neuronal functional failure could precede the neuronal death characteristics of many neurodegenerative diseases.
-
Both central and peripheral sympathetic nervous systems contribute to the cardiovascular effects of dexmedetomidine (DMED), a highly selective and widely used a2-adrenoceptor agonist for sedation, analgesia, and stress management. The central sympatholytic effects are augmented by peripheral inhibition of sympathetic ganglion transmission. The mechanism is not clear. ⋯ In conclusion, DMED dose-dependently inhibits INa and IACh in rat SCG neurons by preferential binding to the inactivated state of the Na(+) channels and the closed state (resting) of nAChR channels respectively. Both inhibitions are a2-adrenoceptor independent. Furthermore, the nAChR channels in rat SCG neurons are much more sensitive to inhibition by DMED than Na(+) channels.
-
Diabetes mellitus (DM) is a major risk factor for stroke and it exacerbates tissue damage after ischemic insult. Diabetes is one of the important causes of the progression of white matter lesion, however, the pathological mechanisms remain unclear. The present study evaluated the influences of type 2 DM on ischemic subcortical white matter injury and the recruitment of oligodendrocyte progenitor cells (OPCs) under chronic cerebral hypoperfusion using type 2 diabetic (db/db) mice. ⋯ Finally, we assessed the survival of 5-bromo-2'-deoxyuridine (BrdU)-positive proliferating cells in ischemic white matter, and found significantly poorer survival of BrdU/PDGFRα-positive OPCs or BrdU/GST-pi-positive OLGs in the db/db mice compared to the db/+ mice in the white matter after BCAS. Our findings suggest that the type 2 DM mice exhibited more severe white matter injury 8 weeks after chronic ischemia. Decreased proliferation and survival of OPCs may play an important role in the progression of white matter lesions after ischemia in diabetics.
-
The development and exacerbation of depression and anxiety are associated with exposure to repeated psychosocial stress. Stress is known to affect the bidirectional communication between the nervous and immune systems leading to elevated levels of stress mediators including glucocorticoids (GCs) and catecholamines and increased trafficking of proinflammatory immune cells. Animal models, like the repeated social defeat (RSD) paradigm, were developed to explore this connection between stress and affective disorders. ⋯ Recently, the observation that these monocytes have the ability to traffic to the brain perivascular spaces and parenchyma have provided mechanisms by which these peripheral cells may contribute to the prolonged anxiety-like behavior associated with RSD. The data that have been amassed from the RSD paradigm and others recapitulate many of the behavioral and immunological phenotypes associated with human anxiety disorders and may serve to elucidate potential avenues of treatment for these disorders. Here, we will discuss novel and key data that will present an overview of the neuroendocrine, immunological and behavioral responses to social stressors.
-
Our understanding of the role of somatosensory feedback in regulating motility during chicken embryogenesis and fetal development in general has been hampered by the lack of an approach to selectively alter specific sensory modalities. In adult mammals, pyridoxine overdose has been shown to cause a peripheral sensory neuropathy characterized by a loss of both muscle and cutaneous afferents, but predominated by a loss of proprioception. We have begun to explore the sensitivity of the nervous system in chicken embryos to the application of pyridoxine on embryonic days 7 and 8, after sensory neurons in the lumbosacral region become post-mitotic. ⋯ Therefore, pyridoxine causes a peripheral sensory neuropathy in embryonic chickens largely consistent with its effects in adult mammals. However, the lesion may be more restricted to proprioception in the chicken embryo. Therefore, pyridoxine lesion induced during embryogenesis in the chicken embryo can be used to assess how the loss of sensation, largely proprioception, alters spontaneous embryonic motility and subsequent motor development.