Neuroscience
-
It has been documented that infection of herpes simplex virus type 1 (HSV-1) contributes to the initiation of Bell's palsy. However, the exact mechanisms responsible for this disorder have not been fully elucidated to date. A mouse model of facial palsy induced by HSV-1 provides an opportunity to investigate the alteration in activities of nuclear factor-kappa B (NF-κB) and its consequent effect on two key inflammatory factors, i.e., tumor necrosis factor (TNF)-α and cyclooxygenase-2 (COX-2), as well as the effect of glucocorticoids (GCs) in this work. ⋯ In addition, GCs inhibited the nuclear translocation and DNA binding activity of NF-κB via inhibiting IκB-α degradation. Meanwhile, TNF-α production and COX-2 expression were significantly reduced by GCs. In conclusion, HSV-1 inoculation induced the activation of NF-κB, expression and secretion of TNF-α and COX-2 in the facial paralyzed mice, while, glucocorticoid effectively down-regulated TNF-α and COX-2 expression in HSV-1-induced paralyzed mice.
-
Oxidative stress and the production of reactive oxygen radicals play a key role in neuronal cell damage. This paper describes an in vitro study that explores the neuronal responses to oxidative stress focusing on changes in neuronal excitability and functional membrane properties. This study was carried out in pyramidal cells of the motor cortex by applying whole-cell patch-clamp techniques on brain slices from young adult rats. ⋯ Most of the neurons, however, kept their repetitive discharge even though their maximum frequency and gain decreased. Furthermore, cancelation of the repetitive firing discharge took place at intensities that decreased with time of exposure to CH, which resulted in a narrower working range. We can conclude that oxidative stress compromises both neuronal excitability and the capability of generating action potentials, and so this type of neuronal functional failure could precede the neuronal death characteristics of many neurodegenerative diseases.
-
Oxytocin (OT) plays an important role in pain modulation and antinociception in the central nervous system. However, little is known about its peripheral effects. This study was conducted to investigate the effect of OT on the electrical properties of neurons in the dorsal root ganglia (DRG) and the underlying mechanisms. ⋯ OT produced a concentration-dependent increase in intracellular Ca(2+) in DRG neurons that responds to capsaicin, which can be attenuated by atosiban, but not by NPLA. OT-evoked membrane hyperpolarization and increase of outward current were distinctly attenuated by glibenclamide, a blocker of ATP-sensitive K(+) (KATP) channel. OT might be an endogenous antinociceptive agent and the peripheral antinociceptive effects of OT are mediated by activation of the Ca(2+)/nNOS/NO/KATP pathway in DRG neurons.
-
To investigate the effect of senescence on signal transmission, we have compared the visual response latency and spontaneous activity of cells in the lateral geniculate nucleus (LGN), area 17, area 18 and posteromedial lateral suprasylvian area (PMLS) of young and old cats. We found that LGN cells in old cats exhibit largely normal visual response latency. ⋯ Area 18 slowed more than area 17, but this was not significant. The degradation of signal timing in the visual cortex might provide insight into neuronal response mechanism underlying perception slowing during aging.
-
Both central and peripheral sympathetic nervous systems contribute to the cardiovascular effects of dexmedetomidine (DMED), a highly selective and widely used a2-adrenoceptor agonist for sedation, analgesia, and stress management. The central sympatholytic effects are augmented by peripheral inhibition of sympathetic ganglion transmission. The mechanism is not clear. ⋯ In conclusion, DMED dose-dependently inhibits INa and IACh in rat SCG neurons by preferential binding to the inactivated state of the Na(+) channels and the closed state (resting) of nAChR channels respectively. Both inhibitions are a2-adrenoceptor independent. Furthermore, the nAChR channels in rat SCG neurons are much more sensitive to inhibition by DMED than Na(+) channels.