Neuroscience
-
The NMDA receptor (NMDAr) hypofunction theory of schizophrenia suggests that aberrant signaling through NMDAr underlies the pathophysiology of this disease. This is commonly modeled in rodents via treatment with NMDAr antagonists, which causes a range of behavioral effects that represent endophenotypes related to schizophrenia. These drugs also disrupt high-frequency neural oscillations within the brain, also potentially relevant to disease. ⋯ Regardless of MK801 infusion location, gamma oscillations and HFOs significantly and consistently increased in all three regions studied, similar to that observed following systemic injection. Locomotor activity, stereotypies and ataxia were also observed following infusion into all regions. We conclude that localized regions exhibiting NMDAr hypofunction are sufficient to disrupt local as well as diffuse neural circuits and global brain function, and concomitantly cause psychosis-related behavioral effects.
-
GPR37 is an orphan G protein-coupled receptor that is predominantly expressed in the brain and found at particularly high levels in oligodendrocytes. GPR37 has been shown to exert effects on oligodendrocyte differentiation and myelination during development, but the molecular basis of these actions is incompletely understood and moreover nothing is known about the potential role(s) of this receptor under demyelinating conditions. To shed light on the fundamental biology of GPR37, we performed proteomic studies comparing protein expression levels in the brains of mice lacking GPR37 and its close relative GPR37-like 1 (GPR37L1). ⋯ As loss of MAG has previously been shown to result in increased susceptibility to brain insults, we additionally assessed Gpr37-knockout (Gpr37-/-) vs. wild-type mice in the cuprizone model of demyelination. These studies revealed that Gpr37-/- mice exhibit dramatically increased loss of myelin in response to cuprizone, yet do not show any increased loss of oligodendrocyte precursor cells or mature oligodendrocytes. These findings reveal that loss of GPR37 alters oligodendrocyte physiology and increases susceptibility to demyelination, indicating that GPR37 could be a potential drug target for the treatment of demyelinating diseases such as multiple sclerosis.
-
The current decerebration procedures discard the role of the thalamus in the motor control and decortication only rules out the brain cortex part, leaving a gap between the brain cortex and the subthalamic motor regions. In here we define a new preparation denominated Brain Cortex-Ablated Cat (BCAC), in which the frontal and parietal brain cortices as well as the central white matter beneath them were removed, this decerebration process may be considered as suprathalamic, since the thalamus remained intact. To characterize this preparation cat hindlimb electromyograms (EMG), kinematics and cutaneous reflexes (CR) produced by electrical stimulation of sural (SU) or saphenous (SAPH) nerves were analyzed during locomotion in intact and in BCAC. ⋯ In intact cats CR produced an inhibition of extensors, as well as excitation and inhibition of flexors, and a complex pattern of withdrawal responses in bifunctional muscles. The same stimuli applied to BCAC produced no detectable responses, but in some cats cutaneous reflexes produced by electrical stimulation of saphenous nerve reappeared when the locomotion speed increased. In BCAC, EMG and kinematic changes, as well as the absence of CR, imply that for this cat preparation there is a partial compensation due to the subcortical locomotor apparatus generating close to normal locomotion.
-
Previous studies have shown that aging modifies taste sensitivity. However, the factors affecting the changes in taste sensitivity remain unclear. To investigate the cause of the age-related changes in taste sensitivity, we compared the peripheral taste detection systems in young and old mice. ⋯ Based on these findings, we conclude that changes in taste sensitivity with aging were not caused by aging-related degradation of peripheral taste organs. Meanwhile, the concentrations of several serum components that modify taste responses changed with age. Thus, taste signal-modifying factors such as serum components may have a contributing role in aging-related changes in taste sensitivity.
-
Recent evidence suggests that ischemia/reperfusion (I/R) in an organ may have distance effect on the brain. In this study, the effects of renal I/R, limb I/R or both together on the structural and function of hippocampus were evaluated and compared. Hence, rats were subjected to 2-h bilateral lower limb ischemia, 45-min bilateral renal ischemia, or combined limb and renal ischemia followed by 1-day reperfusion. ⋯ In the rats with combined limb and renal I/R, the hippocampal neuronal loss and impaired synaptic plasticity were the same as those with limb I/R, but basal synaptic transmission was lowered. In conclusion, the 2-h lower limb ischemia compared to 45-min renal ischemia induced more injurious distant effects on the hippocampus after 1-day reperfusion. The combination of renal and limb I/R did not add or potentiate hippocampal neuronal loss and synaptic plasticity impairment, whereas it decreased the basal synaptic transmission with respect to each one alone.