Neuroscience
-
Muscle pain is an important health issue and frequently related to static force exertion. The aim of this study is to evaluate whether peripheral inflammatory mechanisms are involved with static contraction-induced muscle pain in rats. To this end, we developed a model of muscle pain induced by static contraction performed by applying electrical pulses through electrodes inserted into muscle. ⋯ Furthermore, an increased hyperalgesic response was observed when the selective bradykinin B1 agonist des-Arg9-bradykinin was injected into the previously stimulated muscle. Together, these findings demonstrate that static contraction induced mechanical muscle hyperalgesia in gastrocnemius muscle of rats is modulated through peripheral inflammatory mechanisms that are dependent on neutrophil migration, bradykinin, sympathetic amines and prostanoids. Considering the clinical relevance of muscle pain, we propose the present model of static contraction-induced mechanical muscle hyperalgesia as a useful tool for the study of mechanisms underlying static contraction-induced muscle pain.
-
The current decerebration procedures discard the role of the thalamus in the motor control and decortication only rules out the brain cortex part, leaving a gap between the brain cortex and the subthalamic motor regions. In here we define a new preparation denominated Brain Cortex-Ablated Cat (BCAC), in which the frontal and parietal brain cortices as well as the central white matter beneath them were removed, this decerebration process may be considered as suprathalamic, since the thalamus remained intact. To characterize this preparation cat hindlimb electromyograms (EMG), kinematics and cutaneous reflexes (CR) produced by electrical stimulation of sural (SU) or saphenous (SAPH) nerves were analyzed during locomotion in intact and in BCAC. ⋯ In intact cats CR produced an inhibition of extensors, as well as excitation and inhibition of flexors, and a complex pattern of withdrawal responses in bifunctional muscles. The same stimuli applied to BCAC produced no detectable responses, but in some cats cutaneous reflexes produced by electrical stimulation of saphenous nerve reappeared when the locomotion speed increased. In BCAC, EMG and kinematic changes, as well as the absence of CR, imply that for this cat preparation there is a partial compensation due to the subcortical locomotor apparatus generating close to normal locomotion.
-
The NMDA receptor (NMDAr) hypofunction theory of schizophrenia suggests that aberrant signaling through NMDAr underlies the pathophysiology of this disease. This is commonly modeled in rodents via treatment with NMDAr antagonists, which causes a range of behavioral effects that represent endophenotypes related to schizophrenia. These drugs also disrupt high-frequency neural oscillations within the brain, also potentially relevant to disease. ⋯ Regardless of MK801 infusion location, gamma oscillations and HFOs significantly and consistently increased in all three regions studied, similar to that observed following systemic injection. Locomotor activity, stereotypies and ataxia were also observed following infusion into all regions. We conclude that localized regions exhibiting NMDAr hypofunction are sufficient to disrupt local as well as diffuse neural circuits and global brain function, and concomitantly cause psychosis-related behavioral effects.
-
Heat Stress (HS) induces diverse pathophysiological changes, which include brain ischemia, oxidative stress and neuronal damage. The present study was undertaken with the objective to ascertain whether neuroinflammation in Hypothalamus (HTH) caused under HS affects monoamine levels and hence, its physiological role in thermoregulation. Rats were exposed to HS in a heat simulation environmental chamber (Ambient temperature, Ta=45±0.5°C and Relative Humidity, RH=30±10%) with real-time measurement of core temperature (Tc) and skin temperature (Ts). ⋯ We found a rise in NE whereas a fall in Serotonin (5-HT) level in HTH at MHS, without perturbing inflammatory mediators. However, rats with SHS exhibited significant elevations in NF-kB, IL-1β, COX2, GFAP and Iba1 protein expression in HTH. In conclusion, the data suggest that SHS induces neuroinflammation in HTH, which is associated with monoamines and Glu imbalances, leading to thermoregulatory disruption.
-
Sinomenium acutum has been used in traditional medicine to treat a painful disease such as rheumatic arthritis and neuralgia. Sinomenine, which is a main bioactive ingredient in Sinomenium acutum, has been reported to have an analgesic effect in diverse pain animal models. However little is known about the detailed mechanisms underlying peripheral analgesic effect of sinomenine. ⋯ Voltage-gated sodium currents (INa) were also significantly reduced by sinomenine in a dose-dependent manner (IC50=2.3±0.2mM). Finally, we confirmed that intraplantar application of sinomenine suppressed formalin-induced pain behavior only in the first phase, but not the second phase. Taken together, our results suggest that sinomenine has a peripheral analgesic effect by inhibiting INa.