Neuroscience
-
Short-term plasticity enables synaptic strength to be dynamically regulated by input timing. Excitatory synapses arising from the same axon can have profoundly different presynaptic forms of short-term plasticity onto inhibitory and excitatory neurons. We previously showed that Schaffer collateral synapses onto most hippocampal CA1 stratum radiatum interneurons have less paired-pulse facilitation than synapses onto CA1 pyramidal cells, but little difference in steady-state short-term depression. ⋯ These target-cell specific differences in short-term plasticity reduce the strength of excitatory input onto interneurons relative to pyramidal cells, and of depression interneurons relative to facilitation interneurons, during high frequency portions of the train. This occurs to a similar extent at 25 °C and at 33 °C, and is even greater at physiological extracellular calcium. Target-cell specific differences in short-term plasticity enable synapses to have different temporal filtering characteristics, which may help to dynamically regulate the balance of inhibition and excitation in CA1.
-
Anxiety disorder is a major psychiatric disorder characterized by fear, worry, and excessive rumination. However, the molecular mechanisms underlying neural plasticity and anxiety remain unclear. Here, we utilized a mouse model of anxiety-like behaviors induced by the chronic administration of corticosterone (CORT) to determine the exact mechanism of each region of the fear circuits in the anxiety disorders. ⋯ Immunoblot analyses revealed that autophosphorylation of Ca2+/calmodulin-dependent protein kinase (CaMK) IIα at threonine 286 and phosphorylation of cyclic-adenosine-monophosphate response-element-binding protein (CREB) at serine 133 were markedly increased in the BLA of chronic CORT-treated mice after tone stimulation. The protein and mRNA levels of brain-derived neurotrophic factor (BDNF) also significantly increased. Our findings suggest that increased CaMKII activity and synaptic plasticity in the BLA likely account for the aberrant amygdala-dependent fear memory in chronic CORT-treated mice.
-
Pairing vagus nerve stimulation (VNS) with movements or sounds can direct robust plasticity in motor or auditory cortex, respectively. The degree of map plasticity is influenced by the intensity and pulse width of VNS, number of VNS-event pairings, and the interval between each pairing. It is likely that these parameters interact, influencing optimal implementation of VNS pairing protocols. ⋯ Increasing ISI (Dispersed VNS) did not lead to an enhancement of cortical plasticity. Reducing the current intensity and number of stimulations (Fast VNS) resulted in robust cortical plasticity, using 6 times fewer VNS pairings than the Standard protocol. These findings reveal an interaction between current intensity, stimulation number, and ISI and identify a novel VNS paradigm that is substantially more efficient than the previous standard paradigm.
-
Antipsychotic drugs, including both typical such as haloperidol and atypical such as clozapine, remain the current standard for schizophrenia treatment. These agents are relatively effective in treating hallucinations and delusions. However, cognitive deficits are at present essentially either persistent or exacerbated following chronic antipsychotic drug exposure. ⋯ Chronic treatment with the class I and class II HDAC inhibitor SAHA prevented via HDAC2 the disruptive effects of MK801 on recognition memory. Additionally, chronic SAHA treatment affected transcription of numerous plasticity-related genes in the frontal cortex of control mice, an effect that was not observed in HDAC2-cKO animals. Together, these findings suggest that HDAC2 may represent a novel target to improve synaptic plasticity and cognition in treated schizophrenia patients.
-
Maladaptive behavioral outcomes following stress have been associated with immune dysregulation. For example, we have previously reported that stress-induced dorsal hippocampal interleukin-1β signaling is critical to the development of stress-enhanced fear learning (SEFL). In parallel, astroglial signaling has been linked to the development of post-traumatic stress disorder (PTSD)-like phenotypes and our most recent studies have revealed astrocytes as the predominant cellular source of stress-induced IL-1β. ⋯ Subsequent experiments examined dorsal hippocampal astrocyte volume, surface area, and synaptic contacts (colocalization with postsynaptic density 95 (PSD95)) following exposure to severe stress (capable of inducing SEFL). While severe stress did not alter dorsal hippocampal astrocyte volume or surface area, the severe stressor exposure reduced dorsal hippocampal PSD95 immunoreactivity and the colocalization analysis showed reduced PSD95 colocalized with astrocytes. Collectively, these data provide evidence to support the functional efficacy of the glial-expressing DREADD employed, and suggest that an astrocyte-specific manipulation, activation of astroglial Gi signaling, is sufficient to protect against the development of SEFL, a PTSD-like behavior.