Neuroscience
-
Cerebellar development has a remarkably protracted morphogenetic timeline that is coordinated by multiple cell types. Here, we discuss the intriguing cellular consequences of interactions between inhibitory Purkinje cells and excitatory granule cells during embryonic and postnatal development. Purkinje cells are central to all cerebellar circuits, they are the first cerebellar cortical neurons to be born, and based on their cellular and molecular signaling, they are considered the master regulators of cerebellar development. ⋯ They provide a combination of mechanical, molecular and activity-based cues that shape the maturation of Purkinje cell structure, connectivity and function. We propose that the wiring of Purkinje cells for function falls into two developmental phases: an initial phase that is guided by intrinsic mechanisms and a later phase that is guided by dynamically-acting cues, some of which are provided by granule cells. In this review, we highlight the mechanisms that granule cells use to help establish the unique properties of Purkinje cell firing.
-
Review
Losing the beat: contribution of Purkinje cell firing dysfunction to disease, and its reversal.
The cerebellum is a brain structure that is highly interconnected with other brain regions. There are many contributing factors to cerebellar-related brain disease, such as altered afferent input, local connectivity, and/or cerebellar output. Purkinje cells (PC) are the principle cells of the cerebellar cortex, and fire intrinsically; that is, they fire spontaneous action potentials at high frequencies. ⋯ Notably, there are several cases where interventions that restore or rescue PC intrinsic activity also improve impaired behavior in these mouse models of disease. These findings suggest that rescuing PC firing deficits themselves may be sufficient to improve impairment in cerebellar-related behavior in disease. We propose that restoring PC intrinsic firing represents a good target for drug development that might be of therapeutic use for several disorders.
-
Performance of supercomputers has been steadily and exponentially increasing for the past 20 years, and is expected to increase further. This unprecedented computational power enables us to build and simulate large-scale neural network models composed of tens of billions of neurons and tens of trillions of synapses with detailed anatomical connections and realistic physiological parameters. Such "human-scale" brain simulation could be considered a milestone in computational neuroscience and even in general neuroscience. ⋯ Then, we direct our attention to the cerebellum, with a review of more simulation studies specific to that region. Furthermore, we present recent simulation results of a human-scale cerebellar network model composed of 86 billion neurons on the Japanese flagship supercomputer K (now retired). Finally, we discuss the necessity and importance of human-scale brain simulation, and suggest future directions of such large-scale brain simulation research.
-
Molecular layer interneurons (MLIs) play an important role in cerebellar information processing by controlling Purkinje cell (PC) activity via inhibitory synaptic transmission. A local MLI network, constructed from both chemical and electrical synapses, is organized into spatially structured clusters that amplify feedforward and lateral inhibition to shape the temporal and spatial patterns of PC activity. Several recent in vivo studies indicate that such MLI circuits contribute not only to sensorimotor information processing, but also to precise motor coordination and cognitive processes. Here, we review current understanding of the organization of MLI circuits and their roles in the function of the mammalian cerebellum.
-
The cerebellum is involved in motor learning, and long-term depression (LTD) at parallel fiber-to-Purkinje cell (PF-PC) synapses has been considered to be a primary cellular mechanism for motor learning. In addition, the contribution of norepinephrine (NE) to cerebellum-dependent learning paradigms has been reported. Thus, the roles of LTD and of NE in motor learning have been studied separately, and the relationship between the effects of NE and LTD remains unclear. ⋯ Here we found that specific agonists for β-AR or NE did not directly change synaptic transmission, but lowered the threshold for LTD induction at PF-PC synapses in the flocculus. In addition, protein kinase A (PKA), which is activated downstream of β-AR, facilitated the LTD induction. Altogether, these results suggest that NE facilitates LTD induction at PF-PC synapses in the flocculus by activating PKA through β-AR.