Neuroscience
-
The human cerebellum contributes to both motor and non-motor processes. Within the cerebellum, different subregions support sensorimotor and broader cognitive functions, due to regional patterns in anatomical connectivity with the cerebral cortex and spinal and vestibular systems. We evaluated the effects of transcranial direct current stimulation (tDCS) targeting different cerebellar regions on language task performance and whole-brain functional activation patterns. ⋯ The regions of increased BOLD signal after right posterolateral cerebellar tDCS fell within the network showing functional connectivity with right cerebellar lobule VII, suggesting specific modulation of this network. In contrast, tDCS targeting the sensorimotor cerebellum did not impact task performance and increased BOLD signal only in one cluster extending into the precentral gyrus. These findings indicate that sensorimotor and cognitive functional cerebellar subregions differentially impact behavioral task performance and task-relevant activation patterns, further contributing to our understanding of the cerebellar modulation of motor and non-motor functions.
-
Fifty years have passed since David Marr, Masao Ito, and James Albus proposed seminal models of cerebellar functions. These models share the essential concept that parallel-fiber-Purkinje-cell synapses undergo plastic changes, guided by climbing-fiber activities during sensorimotor learning. ⋯ In this review, we evaluate different features of the three models based on recent computational and experimental studies. While acknowledging that the three models have greatly advanced our understanding of cerebellar control mechanisms in eye movements and classical conditioning, we propose a new direction for computational frameworks of the cerebellum, that is, hierarchical reinforcement learning with multiple internal models.
-
The cerebellum has long been conceptualized to control motor learning and motor coordination. However, increasing evidence suggests its roles in cognition and emotion behaviors. ⋯ To better understand the contribution of the cerebellum in ASD pathogenesis, we here discuss recent behavioral, genetic, and molecular studies from the human and mouse models. In addition, we raise several questions that need to be investigated in future studies from the point view of cerebellar dysfunction, cerebro-cerebellar connectivity and ASD.
-
The cerebellum forms regular neural network structures consisting of a few major types of neurons, such as Purkinje cells, granule cells, and molecular layer interneurons, and receives two major inputs from climbing fibers and mossy fibers. Its regular structures consist of three well-defined layers, with each type of neuron designated to a specific location and forming specific synaptic connections. During the first few weeks of postnatal development in rodents, the cerebellum goes through dynamic changes via proliferation, migration, differentiation, synaptogenesis, and maturation, to create such a network structure. ⋯ Therefore, it is reasonable that extracellular signaling via synaptic transmission, secreted molecules, and cell adhesion molecules, plays important roles in cerebellar network development. Although it is not yet clear as to how overall cerebellar development is orchestrated, there is indeed accumulating lines of evidence that extracellular signaling acts toward the development of individual elements in the cerebellar networks. In this article, we introduce what we have learned from many studies regarding the extracellular signaling required for cerebellar network development, including our recent study suggesting the importance of unbiased synaptic inputs from parallel fibers.
-
This article is dedicated to the memory of Masao Ito. Masao Ito made numerous important contributions revealing the function of the cerebellum in motor control. His pioneering contributions to cerebellar physiology began with his discovery of inhibition and disinhibition of target neurons by cerebellar Purkinje cells, and his discovery of the presence of long-term depression in parallel fiber-Purkinje cell synapses. ⋯ These discoveries became the basis for his ideas regarding the flocculus hypothesis, the adaptive motor control system, and motor learning by the cerebellum, inspiring many new experiments to test his hypotheses. This article will trace the achievements of Ito and colleagues in analyzing the neural circuits of the input-output organization of the cerebellar cortex and nuclei, particularly with respect to motor control. The article will discuss some of the important issues that have been solved and also those that remain to be solved for our understanding of motor control by the cerebellum.