Neuroscience
-
Long noncoding RNA nuclear enriched abundant transcript 1 (lnc-NEAT1) is closely implicated in neurological diseases, while its implication in Alzheimer's disease (AD) is rarely reported. This study aimed to investigate the effect of lnc-NEAT1 knockdown on neuron injury, inflammation, and oxidative stress in AD, as well as its interaction with downstream targets and pathways. APPswe/PS1dE9 transgenic mice were injected with negative control or lnc-NEAT1 interference lentivirus. ⋯ In vitro experiments showed that lnc-NEAT1 knockdown decreased apoptosis and oxidative stress, improved cell viability, also activated CREB/BDNF and NRF2/NQO1 pathways in AD cellular model. Meanwhile, microRNA-193a knockdown showed the opposite effects, which also attenuated lnc-NEAT1 knockdown-mediated reduction in injury, oxidative stress, and CREB/BDNF and NRF2/NQO1 pathways of AD cellular model. In conclusion, lnc-NEAT1 knockdown reduces neuron injury, inflammation, and oxidative stress through activating microRNA-193a mediated CREB/BDNF and NRF2/NQO1 pathways in AD.
-
We consider the possibility of applying game theory to analysis and modeling of neurobiological systems. Specifically, the basic properties and features of information asymmetric signaling games are considered and discussed as having potential to explain diverse neurobiological phenomena; we focus on neuronal action potential discharge that can represent cognitive variables in memory and purposeful behavior. We begin by arguing that there is a pressing need for conceptual frameworks that can permit analysis and integration of information and explanations across many scales of biological function including gene regulation, molecular and biochemical signaling, cellular and metabolic function, neuronal population, and systems level organization to generate plausible hypotheses across these scales. ⋯ These areas are intensely studied in rodent subjects as model neuronal systems that undergo activity-dependent synaptic plasticity to form neuronal circuits and represent memories and spatial knowledge used for purposeful navigation. Examples of cognition-related spatial information in the observed neuronal discharge of hippocampal place cell populations and medial entorhinal head-direction cell populations are used to illustrate possible challenges to information maximization concepts. It may be natural to explain these observations using the ideas and features of information asymmetric signaling games.
-
Ischemic stroke (IS) is one of the leading causes of disability and death worldwide. Long-chain fatty-acid-coenzyme A ligase 4 (ACSL4) is a critical isozyme for ferroptosis that participates in the progression of IS. RING finger protein 146 (RNF146) is an E3 ligase predicted to interact with ACSL4 and regulated by activating transcription factor 3 (ATF3). ⋯ RNF146 overexpression could prevent the stimulation of OGD/R-induced LDH, MDA, and Fe2+ levels and ferroptosis-related gene expression. ATF3 could activate the transcription and expression of RNF146, leading to the inhibition of OGD/R-induced neuron ferroptosis. The ATF3-mediated RNF146 could alleviate neuronal damage in IS by regulating ACSL4 ubiquitination and ferroptosis, providing a novel theoretical basis for exploring therapeutic targets and strategies.
-
It has been reported that individuals with psychogenic erectile dysfunction (pED) potentially suffer from cognitive declines. Despite that increasing neuroimaging studies have demonstrated abnormalities of cerebral structural changes in pED, the association between altered white matter (WM) structural network and cognitive impairments remains unclear. Hence, this study aimed to explore the relationship between WM structural network connectivity and cognitive performance in patients with pED. ⋯ Compared with HCs, we found that pED patients showed higher fractional anisotropy (FA) values between left transverse temporal sulcus and left supramarginal gyrus, and lower FA values between left suborbital sulcus and left para-hippocampal part of the medial occipito-temporal gyrus in pED patients. Furthermore, the increased FA between left transverse temporal sulcus and left supramarginal gyrus was observed to be negatively associated with impaired delayed memory. Overall, our findings provide new insights into WM network alterations associated with impaired cognitive functions in pED, which may unravel the potential neural mechanisms underlying the cognitive impairments of pED patients.
-
Intranasal insulin reduces lesion size and enhances memory capacity in traumatic brain injury (TBI) models, but the molecular mechanisms behind this neuroprotective action not yet understood. Here we used Feeney's free-falling method to construct TBI mouse models and administrated intranasal insulin, rapamycin, insulin and rapamycin, or normal saline to assess their effects on neurological functions, cerebral edema, and the expression of Iba1 in microglia through immunofluorescence assay. We also measured concentrations of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the brain using enzyme immunosorbent assay, investigated apoptosis with TUNEL staining and Western blotting, and evaluated autophagy, endoplasmic reticulum (ER) stress, and PI3K/Akt/mTOR signaling pathway with Western blotting. ⋯ TUNEL assay and Western blotting also indicated that intranasal insulin inhibited ER stress-mediated apoptosis. Interestingly, the mTOR inhibitor rapamycin partially blocked the pro-autophagy and anti-apoptosis effects of intranasal insulin both on days 1 and 3 post TBI. Our results suggest that intranasal insulin can ameliorate TBI by regulating autophagy and ER stress-mediated apoptosis through the PI3K/AKT/mTOR signaling pathway, providing a promising therapeutic strategy for TBI.