Neuroscience
-
Fragile XSyndrome (FXS) is a leading known genetic cause of Autism Spectrum Disorders (ASD) and intellectual disability. A consistent and debilitating phenotype of FXS is sensory hypersensitivity that manifests strongly in the auditory domain and may lead to delayed language and high anxiety. The mouse model of FXS, the Fmr1 KO mouse, also shows auditory hypersensitivity, an extreme form of which is seen as audiogenic seizures (AGS). ⋯ Treatment with a combination of NLX-101 and 5-HT1A receptor antagonists prevented the protective effects of NLX-101, indicating that NLX-101 acts selectively through 5-HT1A receptors to reduce audiogenic seizures. NLX-101 (1.8 mg/kg) was still strongly effective in reducing seizures even after repeated administration over 5 days, suggesting an absence of tachyphylaxis to the effects of the compound. Together, these studies point to a promising treatment option targeting post-synaptic 5-HT1A receptors to reduce auditory hypersensitivity in FXS, and potentially across autism spectrum disorders.
-
Metabotropic glutamate receptor subtype 7 (mGluR7) is a member of the group III mGluRs, which localize to presynaptic active zones of the central nervous system. We previously reported that mGluR7 knockout (KO) mice exhibit ejaculatory disorders, although they have normal sexual motivation. We hypothesized that mGluR7 regulates ejaculation by potentiating the excitability of the neural circuit in the lumbosacral spinal cord, because administration of the mGluR7-selective antagonist into that region inhibits drug-induced ejaculation. ⋯ Histological examination indicated that mGluR7 controls sympathetic neurons as well as parasympathetic neurons. In view of the complexity of its synaptic regulation, mGluR7 might control ejaculation by multi-level and multi-modal mechanisms. Our study provides insight into the mechanism of ejaculation as well as a strategy for future therapies to treat ejaculatory disorders in humans.
-
Understanding the neuro-molecular mechanisms that mediate the quantity of daily physical activity (PA) level is of medical significance, given the tremendous health benefits associated with greater physical activity. Here, we examined the effects of intra-nucleus accumbens (NAc) inhibition of activator protein-1 (AP-1), an important transcriptional factor downstream of cAMP response element binding protein (CREB; a reward-related transcriptional regulator), on voluntary wheel running behavior in wild-type (WT) and low voluntary running (LVR) female rats. Transcriptome analysis of the nucleus accumbens (NAc; a brain region critical for PA reward and motivation) was performed to further determine molecular responses to intra-NAc AP-1 inhibition in these rat lines. ⋯ In contrast to above decreased WT distances, intra-NAc AP-1 inhibition in LVR rats increased nightly running distance in comparison to LVR control rats (p = 0.0008). Further analysis identified gene products that are associated with regulating intracellular Ca2+ homeostasis, calcium ion binding and neuronal excitability. In short, our study aims to gain a comprehensive understanding of transcriptional profile that was due to AP-1 inhibition in NAc, in which it could not only enhance the knowledge regarding molecular regulatory loops within NAc for modulating voluntary running behavior, but also provide further insights into molecular targets for future investigations.
-
Advances in single cell sequencing have enabled the identification of a large number of genes, expressed in many different cell types, and across a variety of model organisms. In particular, the nervous system harbors an immense number of interacting cell types, which are poorly characterized. Future loss- and gain-of-function experiments will be essential in determining how novel genes play critical roles in diverse cellular, as well as evolutionarily adapted, contexts. ⋯ Furthermore, we report additional technical advances that enable temporal control of knock-down or gain-of-function analysis. We applied this to visualize and manipulate labeled neurons, astrocytes and other glial cells in the central nervous system (CNS) of mouse, rat and ferret. We propose that misPiggy will be a valuable tool for rapid, flexible and cost-effective screening of gene function across a variety of animal models.