Neuroscience
-
To extensively identify cerebrospinal fluid (CSF) cytokine profiles related to the occurrence, development and prognosis of viral encephalitis (VE) patients by using a high-throughput proteomic approach. We measured 80 cytokines in the CSF of acute-phase VE patients (n = 11) using high-throughput protein chip technology, comparing them to controls (n = 6). ELISA validated these findings and assessed additional cytokines from prior literature in a larger cohort (15 VE patients, 15 controls). ⋯ Although these cytokines are not specific, they may be related to the occurrence and development of VE. CTSL, MIF, IL-1β, TNF-α and CXCL10 can be used as VE potential biomarkers. These cytokines may participate in the pathogenesis of VE through inflammatory response, cell apoptosis, autophagy, blood-brain barrier disruption and cytokine-cytokine receptor interaction pathway.
-
The aim of this study was to investigate alterations in the resting-state brain functional network characteristics of lifelong premature ejaculation (PE) patients using surface-based degree centrality (DC), and to analyze the correlation between these alterations and clinical symptoms in PE patients. The study included individuals with lifelong PE (patient group, n = 36) and a control group matched by age and education level (control group, n = 22). Resting-state functional magnetic resonance imaging (fMRI) scans were performed on all participants. ⋯ Furthermore, intravaginal ejaculatory latency time (IELT) and Chinese Index of Premature Ejaculation (CIPE) values were positively correlated with left precuneus DC values and negatively correlated with right SMA DC values. Patients with primary lifelong ejaculation demonstrate abnormalities in key brain network nodes and their connections with relevant brain regions, which are strongly associate with clinical symptoms. These findings enhance our understanding of the neuronal pathological changes in PE patients.
-
Cortical activity is coupled with streams of sensory stimulation. The coupling with the temporal envelope of heard speech is known as the cortical tracking of speech (CTS), and that with movement kinematics is known as the corticokinematic coupling (CKC). Simultaneous measurement of both couplings is desirable in clinical settings, but it is unknown whether the inherent dual-tasking condition has an impact on CTS or CKC. ⋯ Despite the subtle behavioral effects, CTS and CKC are not evidently altered by the dual-task setting inherent to recording them simultaneously and can be evaluated simultaneously using EEG in clinical settings.
-
A periodic sound with a fixed inter-stimulus interval elicits an auditory steady-state response (ASSR). An abrupt change in a continuous sound is known to affect the brain's ongoing neural oscillatory activity, but the underlying mechanism has not been fully clarified. We investigated whether and how an abrupt change in sound intensity affects the ASSR. ⋯ The two-dipole model obtained for the 40-Hz ASSR in the control condition was applied to all of the stimulus conditions for each subject, and then the time-frequency analysis was conducted. We observed that both the amplitude and the inter-trial phase coherence of the 40-Hz ASSR transiently decreased and returned to the steady state after the change onset, i.e., the desynchronization of 40-Hz ASSR. The degree of desynchronization depended on the magnitude of the change regardless of whether the sound intensity increased or decreased, which might be a novel neurophysiological index of cerebral response driven by a change in the sensory environment.
-
Theta oscillations in observers' temporal cortex index postural instability of point-light displays.
This study investigates whether postural equilibration follows the same principles of motor resonance as goal-oriented actions, namely, whether an individual activates the same neuronal substrates when experiencing postural perturbation as when observing another individual in this condition. To address this question, we examined electroencephalographic dynamics while subjects observed point-light displays featuring an unstable human display, a stable human display, and their respective scrambled counterparts lacking shape information and biological motion. We focused on theta band (4-7 Hz), which is a fundamental frequency for modulating brain activity during challenging balance tasks and reflects postural stability monitoring. ⋯ By contrast, the stronger theta response to the stable display as compared to the unstable one could be due to the difficulty of recognizing low-motion biological stimuli, or alternatively, to a facilitation of stimulus processing and strengthening of the mirroring response. The response facilitation for stable posture, coupled with a diminished response to the unstable display, could contribute to a broader mechanism mitigating postural threats and ensuring stable balance. Future investigations should leverage these findings to explore how posture-related responses correlate with perceptual and motor expertise, and to more clearly define these mechanisms during dynamic social interactions.