Neuroscience
-
A common anatomical core has been described for psychiatric disorders, consisting of the dorsal anterior cingulate cortex (dACC) and anterior insula, processing uncertainty. A common neurophysiological core has been described for other brain related disorders, called thalamocortical dysrhythmia (TCD), consisting of persistent cross-frequency coupling between low and high frequencies. And a common genetic core has been described for yet another set of hypodopaminergic pathologies called reward deficiency syndromes (RDS). ⋯ TCD and RDS share a common anatomical and neurophysiological core, consisting of beta activity in the dACC and theta activity in dACC extending into precuneus and dorsolateral prefrontal cortex. TCD and RDS differ in pgACC/vmPFC activity and demonstrate an opposite balance between pgACC/vmPFC and dACC. Based on the Bayesian brain model TCD and RDS can be defined as uncertainty disorders in which the pgACC/vmPFC and dACC have an opposite balance, possibly explained by an inverted-U curve profile of both pgACC/vmPFC and dACC.
-
Targeted intracranial delivery of molecularly-specific therapies within intricate brain structures poses a formidable challenge due to the heterogeneity of neuronal phenotypes and functions. Here we report the use of an implantable, miniaturized neural drug delivery system permitting dynamic adjustment of pharmacotherapies. ⋯ Remarkably, we demonstrate that micro infusions of U-50488 into the dorsal NASh induces reward-like conditioned place preferences, whereas a mere 1 mm shift ventrally results in conditioned place aversions. The striking precision afforded by this method may prove useful in other neurotherapeutic interventions.
-
Stress is an independent risk factor for cognitive impairment, with elevated plasma homocysteine (HCY) levels playing a crucial role in stress-induced cognitive decline. While the rise in plasma HCY levels is linked to abnormal peripheral catabolism, the impact of stress on HCY catabolism in the brain remains unclear. This study investigated the effect of stress on HCY metabolism in the brain by analyzing HCY and its metabolic enzymes in the hippocampus and prefrontal cortex. ⋯ Immunofluorescence double-labeling revealed the downregulation of HCY metabolic enzymes in neurons of stressed mice. The transcription factor KLF4 (Kruppel-likefactor4), known for its inhibitory role, increased after stress or glucocorticoid treatment and suppressed the expression of MS, CBS, and CSE, contributing to elevated HCY levels in the brain. These findings offer new insights into the impairment of HCY catabolism in the stressed brain, suggesting that the downregulation of HCY metabolic enzymes may underlie HCY accumulation and exacerbate stress-induced cognitive dysfunction.
-
Neural stem cells and/or progenitor cells (NSCs/NPCs) in the subventricular and subgranular zones of the adult mammal forebrain generate new neurons and are involved in partial repair after injury. Recently, NSCs/NPCs were identified in the area postrema (AP) of the medulla oblongata of the hindbrain. In this study, we used the properties of fenestrate capillaries to observe specific neuronal elimination in the AP of adult mice and investigated subsequent neuronal regeneration by neurogenesis. ⋯ Within 7 days of MSG administration, the number of BrdU+ Sox2+ and BrdU+ Math1+ cells increased markedly, and at least the BrdU+ Math1+ cells similarly increased for the next following 7 days. A remarkable number of HuC/D+ neurons with BrdU+ nuclei were observed 35 days after MSG administration. This study reveals that neurogenesis occurs in the AP of adult mice, recovering and maintaining normal neuronal density after neuronal death.
-
Stress is triggered by a threatening event that alters the regulation of emotion, behavior, and cognition. The effects of stress on memory in animal models are well-documented. Firstly, this study aimed to determine whether the repeated forced swim stress (FSS) protocol induces memory impairment comparable to single prolonged stress (SPS) in the Y-maze test. ⋯ Mice underwent a Y-maze test, after which they were euthanized, and hippocampal samples were collected. (p-ClPhSe)2 pretreatment protected against the reduction in time spent in the novel arm by mice subjected to FSS. Repeated FSS exposure increased hippocampal protein levels of NMDAR subunits 2A, 2B, and EAAT1 compared to controls. (p-ClPhSe)2 pretreatment prevented this increase. In conclusion, (p-ClPhSe)2 mitigated stress-induced memory impairment in FSS-exposed mice, normalizing hippocampal NMDAR 2A, 2B, and EAAT1 protein levels.