Neuroscience
-
Motor imagery (MI) is a brain-computer interface (BCI) technique in which specific brain regions are activated when people imagine their limbs (or muscles) moving, even without actual movement. The technology converts electroencephalogram (EEG) signals generated by the brain into computer-readable commands by measuring neural activity. Classification of motor imagery is one of the tasks in BCI. ⋯ Finally, the processed data is input into the encoder layer of the Transformer for a self-attention calculation to obtain the classification results. Our approach was tested on the well-known MI datasets BCI Competition IV 2a and 2b, and the results show that the 2a dataset has a global average classification accuracy of 83.3% and a kappa value of 0.78. Experimental results show that the proposed method outperforms most of the existing methods.
-
Microglia are crucial in induction of central sensitization under a chronic pain state. Therefore, control of microglial activity is important to ameliorate nociceptive hypersensitivity. The nuclear receptor retinoic acid related orphan receptor γ (RORγ) contributes to the regulation of inflammation-related gene transcription in some immune cells, including T cells and macrophages. ⋯ These responses were prevented by intrathecal pretreatment with SR2211. In addition, intrathecal administration of SR2211 significantly ameliorated established mechanical hypersensitivity and upregulation of Iba1 immunoreactivity in the spinal dorsal horn of male mice following peripheral sciatic nerve injury. The current findings demonstrate that blockade of RORγ in spinal microglia exerts anti-inflammatory effects, and that RORγ may be an appropriate target for the treatment of chronic pain.
-
Current data suggest a hypothesis of vascular pathogenesis for the development and progression of Alzheimer's disease (AD). To investigate this, we studied the association of apolipoprotein E4 (APOE4) gene on microvessels in human autopsy-confirmed AD with and without APOE4, compared with age/sex-matched control (AC) hippocampal CA1 stratum radiatum. AD arterioles (without APOE4 gene) had mild oxidative stress and loss of vascular endothelial growth factor (VEGF) and endothelial cell density, reflecting aging progression. ⋯ This cell over-proliferation was inhibited with the antioxidants N-acetyl cysteine and MnTMPyP, the HIF-1α inhibitor echinomycin, the VEGFR-2 receptor blocker SU1498, the protein kinase C (PKC) ε knock-down (KD) and the extracellular signal-regulated kinase 1/2 (ERK) inhibitor FR180204. The PKCε KD and echinomycin decreased VEGF and/or ERK. In conclusion, AD capillaries and arterioles in hippocampal CA1 stratum radiatum of non-APOE4 carriers are related with aging, while those in APOE4 carriers with AD are related with pathogenesis of cerebrovascular disease.
-
Parkinson's Disease is a synucleinopathy that primarily affects the dopaminergic cells of the central nervous system, leading to motor and gastrointestinal disturbances. However, intestinal peripheral neurons undergo a similar neurodegeneration process, marked by α-synuclein (αSyn) accumulation and loss of mitochondrial homeostasis. We investigated the metabolic alterations in different biometrics that compose the gut-brain axis (blood, brain, large intestine, and feces) in an MPTP-induced mouse model of sporadic Parkinson's Disease. ⋯ The direct evaluation of fecal metabolites revealed changes in several classes of metabolites. This data reinforces previous studies showing that Parkinson's disease is associated with metabolic perturbation not only in brain-related tissues, but also in periphery structures such as the gut. In addition, the evaluation of the microbiome and metabolites from gut and feces emerge as promising sources of information for understanding the evolution and progression of sporadic Parkinson's Disease.
-
The major immune cells of the central nervous systems (CNS) are microglia and astrocytes, subsets of the glial cell population. The crosstalk between glia via soluble signaling molecules plays an indispensable role for neuropathologies, brain development as well as homeostasis. However, the investigation of the microglia-astrocyte crosstalk has been hampered due to the lack of suitable glial isolation methods. ⋯ Finally, co-culturing microglia and astrocytes confirmed the prior results by demonstrating a significant TNF release by WT microglia co-cultured with TLR2-KO astrocytes. Our findings suggest a molecular TLR2/1-dependent conversation between highly pure activated microglia and astrocytes via signaling molecules. Furthermore, we demonstrate the first crosstalk experiments using ∼100% pure microglia and astrocyte mono-/co-cultures derived from mice with different genotypes highlighting the urgent need of efficient glial isolation protocols, which particularly holds true for astrocytes.