Neuroscience
-
Abnormal N-methyl-D-aspartate receptor (NMDAr) function has been linked to oscillopathies, psychosis, and cognitive dysfunction in schizophrenia (SCZ). Here, we investigate the role of NMDAr hypofunction in pathological oscillations and behavior. We implanted mice with tetrodes in the dorsal/intermediate hippocampus and medial prefrontal cortex (mPFC), administered the NMDAr antagonist MK-801, and recorded oscillations during spontaneous exploration in an open field and in the y-maze spatial working memory test. ⋯ In the mPFC, MK-801 increased the power of theta and gamma, generated high-frequency oscillations (HFO 155-185 Hz), and disrupted theta/gamma coupling. Moreover, the performance of mice in the spatial working memory version of the y-maze was strongly correlated with CA1-PFC theta/gamma co-modulation. Thus, theta/gamma mediated by NMDAr function might explain several of SCZ's cognitive symptoms and might be crucial to explaining hippocampal-PFC interaction.
-
The present study aimed to investigate the relationship between olfactory sulcus (OS) depth and olfactory function considering age and gender and to provide normative data on OS depth in a population with normal olfactory function. ⋯ Considering the limited resolution of the presently used T1 weighted MR scans and the nature of the olfactory screening test, OS depth explained only minor portions of the variance of olfactory function, which was largely determined by age. Age-related normative data of OS depth are presented as a reference for future work.
-
Time estimation is fundamental for human survival. There have been increasing studies suggesting that distributed brain regions, such as the basal ganglia, cerebellum and the parietal cortex, may contribute to a dedicated neural mechanism of time estimation. However, evidence on the specific function of the subcortical and cortical brain regions and the interplay of them is scare. ⋯ Besides, the superior temporal gyrus (STG) was found essential in the difference between time estimation in visual and auditory modality. Using psychophysiological interaction (PPI) analysis, we observed an increase in the connection between left caudate and left precuneus using the left caudate as the seed region in temporal reproduction task than control task. This suggested that the left caudate is the key region connecting and transmitting information to other brain regions in the dedicated brain network of time estimation.
-
Neonatal pain experiences including traumatic injury influence negatively on development of nociceptive circuits, resulting in persistent pain hypersensitivity in adults. However, the detailed mechanism is not yet well understood. In the present study, to clarify the pathogenesis of orofacial pain hypersensitivity associated with neonatal injury, the involvement of the voltage-gated sodium channel (Nav) 1.8 and the C-C chemokine ligand 2 (CCL2)/C-C chemokine receptor 2 (CCR2) signaling in the trigeminal ganglion (TG) in facial skin incisional pain hypersensitivity was examined in 190 neonatal facial-injured and sham male rats. ⋯ Blockages of Nav1.8 in the incised region and CCR2 in the TG suppressed the enhancement of mechanical hypersensitivity in the Incision-Incision group. Administration of CCL2 into the TG enhanced mechanical hypersensitivity in the Sham-Sham, Incision-Sham and Sham-Incision group. Our results suggest that neonatal facial injury accelerates the TG neuronal hyperexcitability following orofacial skin injury in adult in association with Nav1.8 overexpression via CCL2 signaling, resulting in the enhancement of orofacial incisional pain hypersensitivity in the adulthood.
-
Neonatal seizures commonly caused by hypoxia can lead to long-term neurological outcomes. Early inflammation plays an important role in the pathology of these outcomes. Therefore, in the current study, we explored the long-term effects of Fingolimod (FTY720), an analog of sphingosine and potent sphingosine 1-phosphate (S1P) receptors modulator, as an anti-inflammatory and neuroprotective agent in attenuating anxiety, memory impairment, and possible alterations in gene expression of hippocampal inhibitory and excitatory receptors following hypoxia-induced neonatal seizure (HINS). ⋯ These effects were associated with restoration of the hippocampal thiol content to the normal values and the regulatory role of FTY720 in the expression of hippocampal GABA and glutamate receptors subunits. In conclusion, FTY720 could restore the dysregulated gene expression of excitatory and inhibitory receptors. It also increased the reduced hippocampal thiol content, which was accompanied with attenuation of HINS-induced anxiety, reduced the impaired hippocampal related memory, and prevented hippocampal LTP deficits in later life following HINS.