Neuroscience
-
Given the importance of understanding the disorders caused by trans fatty acids (TFAs), this study sought to add different concentrations hydrogenated vegetable fat (HVF) to the diet of Drosophila melanogaster during the developmental period and evaluate the effects on neurobehavioral parameters. Longevity, hatching rate, and behavioral functions were assessed, such as negative geotaxis, forced swimming, light/dark, mating, and aggressiveness. ⋯ As for the biochemical parameters, there was a more significant presence of TFA in flies exposed to HVF at all concentrations evaluated and lower 5HT and DA levels. This study shows that HVF during the developmental phase can cause neurological changes and consequently induce behavioral disorders, thereby highlighting the importance of the type of FA offered in the early stages of life.
-
The analgesic effect of opioids decreases over time due to the development of analgesic tolerance. We have shown that inhibition of the platelet-derived growth factor beta (PDGFR-β) signaling eliminates morphine analgesic tolerance in rats. Although the PDGFR-β and its ligand, the platelet-derived growth factor type B (PDGF-B), are expressed in the substantia gelatinosa of the spinal cord (SG) and in the dorsal root ganglia (DRG), their precise distribution within different cell types of these structures is unknown. ⋯ Consistent with our previous finding that morphine caused tolerance by inducing PDGF-B release, PDGF-B was upregulated in the spinal cord. We also found that chronic morphine exposure caused a spinal proliferation of oligodendrocytes. The changes in PDGFR-β and PDGF-B expression induced by chronic morphine treatment suggest potential mechanistic substrates underlying opioid tolerance.
-
The circadian clock can coordinate, regulate and predict physiology and behavior in response to the standard light-dark (LD: 12 h light and 12 h dark) cycle. If we alter the LD cycle by exposing mice to constant darkness (DD: 00 h light and 24 h dark), it can perturb behavior, the brain, and associated physiological parameters. The length of DD exposure and the sex of experimental animals are crucial variables that could alter the impact of DD on the brain, behavior, and physiology, which have not yet been explored. ⋯ Three weeks of restoration was adequate to establish homeostasis in both sexes. To the best of our knowledge, this study is the first of its kind to look at how DD exposure impacts physiology and behavior as a function of sex- and time. These findings would have translational value and may help in establishing sex-specific interventions for addressing DD-related psychological issues.
-
According to the correlated transmitter-receptor based structure of the inferior parietal cortex (IPC), this brain area is divided into three clusters, namely, the caudal, the middle and the rostral. Nevertheless, in associating different cognitive functions to the IPC, previous studies considered this part of the cortex as a whole and thus inconsistent results have been reported. Using multiband echo planar imaging (EPI), we investigated the connectivity profile of the middle IPC while forty-five participants performed a task requiring cognitive control. ⋯ At the same time, this cortical area showed negative functional connectivity with both the precuneus cortex, which is resting- state related, and brain areas related to general cognitive functions. That is, the functions of the middle IPC are not accommodated by the traditional categorization of different brain areas i.e. resting state-related or task-related networks and this advanced our hypothesis about modulating cortical areas. Such brain areas are characterized by their negative functional connectivity with parts of the cortex involved in task performance, proportional to the difficulty of the task; yet, their functional associations are inconsistent with the resting state-related cortical areas.
-
Reconsolidation results in the restabilisation, and thus persistence, of a memory made labile by retrieval, and interfering with this process is thought to enable modification or weakening of the original trace. As such, reconsolidation-blockade has been a focus of research aiming to target the maladaptive memories underlying mental health disorders, including post-traumatic stress disorder and drug addiction. Current first-line therapies are not effective for all patients, and a substantial proportion of those for whom therapies are effective later relapse. ⋯ These include factors such as the age and strength of memory, and can broadly be divided into two categories: intrinsic features of the targeted memory itself, and parameters of the reactivation procedure used. With maladaptive memory characteristics inevitably varying amongst individuals, manipulation of the other limitations imposed by procedural variables have been explored to circumvent the boundary conditions on reconsolidation. Although several apparently discrepant results remain to be reconciled and these limitations yet to be truly defined, many studies have produced successful results which encouragingly demonstrate that boundary conditions may be overcome using various proposed strategies to enable translation of a reconsolidation-based intervention to clinical use.