IEEE transactions on medical imaging
-
IEEE Trans Med Imaging · Sep 2005
White matter fiber tractography via anisotropic diffusion simulation in the human brain.
A novel approach to noninvasively tracing brain white matter fiber tracts is presented using diffusion tensor magnetic resonance imaging (DT-MRI). This technique is based on successive anisotropic diffusion simulations over the human brain, which are utilized to construct three dimensional diffusion fronts. ⋯ It is shown that the synthetic tracts are accurately replicated, and several major white matter fiber pathways can be reproduced noninvasively, with the tract branching being allowed. Since simulating the diffusion process, which is truly a physical phenomenon reflecting the underlying architecture of cerebral tissues, makes full use of the diffusion tensor data, including both the magnitude and orientation information, the proposed approach is expected to enhance robustness and reliability in white matter fiber reconstruction.
-
Clusters of correlated activity in functional magnetic resonance imaging data can identify regions of interest and indicate interacting brain areas. Because the extraction of clusters is computationally complex, we apply an approximative method which is based on artificial neural networks. ⋯ We propose a criterion which allows to evaluate the relevance of such structures based on the robustness with respect to parameter variations. Exploiting the intracluster correlations, we can show that regions of substantial correlation with an external stimulus can be unambiguously separated from other activity.
-
IEEE Trans Med Imaging · Jun 2005
Nonlinear phase correction with an extended statistical algorithm.
This paper presents a new magnetic resonance imaging (MRI) phase correction method. The linear phase correction method using autocorrelation proposed by Ahn and Cho (AC method) is extended to handle nonlinear terms, which are often important for polynomial expansion of phase variation in MRI. The polynomial coefficients are statistically determined from a cascade series of n-pixel-shift rotational differential fields (RDFs). ⋯ We have found that increasing the shift enhances the signal significantly and extends the AC method to handle higher order nonlinear phase error terms. The n-pixel-shift RDF can also be applied to improve other methods such as the weighted least squares phase unwrapping method proposed by Liang. The feasibility of the method has been demonstrated with two-dimensional (2-D) in vivo inversion-recovery MRI data.
-
IEEE Trans Med Imaging · Jun 2005
Clinical TrialA stochastic model for studying the laminar structure of cortex from MRI.
The human cerebral cortex is a laminar structure about 3 mm thick, and is easily visualized with current magnetic resonance (MR) technology. The thickness of the cortex varies locally by region, and is likely to be influenced by such factors as development, disease and aging. Thus, accurate measurements of local cortical thickness are likely to be of interest to other researchers. ⋯ Here, we show estimates of these parameters for 10 volumes in the posterior cingulate, and 6 volumes in the anterior and posterior banks of the central sulcus. The accuracy of the estimates is quantified via Cramer-Rao bounds. We believe that this relatively crude model can be extended in a straightforward fashion to other biologically and theoretically interesting problems such as segmentation, surface area estimation, and estimating the thickness distribution in a variety of biologically relevant contexts.
-
IEEE Trans Med Imaging · Jun 2005
Comparative StudyDespeckling of medical ultrasound images using data and rate adaptive lossy compression.
A novel technique for despeckling the medical ultrasound images using lossy compression is presented. The logarithm of the input image is first transformed to the multiscale wavelet domain. It is then shown that the subband coefficients of the log-transformed ultrasound image can be successfully modeled using the generalized Laplacian distribution. ⋯ Simulation results using a contrast detail phantom image and several real ultrasound images are presented. To validate the performance of the proposed scheme, comparison with two two-stage schemes, wherein the speckled image is first filtered and then compressed using the state-of-the-art JPEG2000 encoder, is presented. Experimental results show that the proposed scheme works better, both in terms of the signal to noise ratio and the visual quality.