NMR in biomedicine
-
Previous studies have provided evidence of structural and task-related functional changes in the brains of patients with migraine without aura. Resting-state brain activity in patients with migraine provides clues to the pathophysiology of the disease. However, few studies have focused on the resting-state abnormalities in patients with migraine without aura. ⋯ In addition, we found that ReHo values were negatively correlated with the duration of disease in the right rACC and PFC. Our results suggest that the resting-state abnormalities of these regions may be associated with functional impairments in pain processing in patients with migraine without aura. We hope that our results will improve the understanding of migraine.
-
Previous studies have shown that skeletal muscle diffusion tensor imaging (DTI) can noninvasively probe changes in the muscle fiber architecture and microstructure in diseased and damaged muscles. However, DTI fiber reconstruction in small muscles and in muscle regions close to aponeuroses and tendons remains challenging because of partial volume effects. Increasing the spatial resolution of skeletal muscle single-shot diffusion-weighted echo planar imaging (DW-EPI) can be hindered by the inherently low signal-to-noise ratio (SNR) of muscle DW-EPI because of the short muscle T(2) and the high sensitivity of single-shot EPI to off-resonance effects and T(2)* blurring. ⋯ On the basis of the selected parameters in a high-resolution skeletal muscle single-shot DW-EPI protocol, imaging protocols at lower acquisition matrix sizes are defined with matched bandwidth in the phase-encoding direction and SNR. In vivo results show that high-resolution skeletal muscle DTI with minimized sensitivity to geometric distortions and T(2)* blurring is feasible using the proposed methodology. In particular, a significant benefit is demonstrated from a reduction in partial volume effects for resolving multi-pennate muscles and muscles with small cross-sections in calf muscle DTI.
-
Comparative Study
Spatial location and strength of BOLD activation in high-spatial-resolution fMRI of the motor cortex: a comparison of spin echo and gradient echo fMRI at 7 T.
The increased blood oxygenation level-dependent contrast-to-noise ratio at ultrahigh field (7 T) has been exploited in a comparison of the spatial location and strength of activation in high-resolution (1.5 mm isotropic) gradient echo (GE) and spin echo (SE), echo planar imaging data acquired during the execution of a simple motor task in five subjects. SE data were acquired at six echo times from 30 to 55 ms. Excellent fat suppression was achieved in the SE echo planar images using slice-selective gradient reversal. ⋯ At this TE, the ratio of the fractional signal change in GE and SE data was found to be 0.48 ± 0.05. Phase maps produced from high-resolution GE images spanning the right motor cortex were used to identify veins. The GE ROI was found to contain 18% more voxels overlying the venous mask than the SE ROI.
-
Many axons follow wave-like undulating courses. This is a general feature of extracranial nerve segments, but is also found in some intracranial nervous tissue. The importance of axonal undulation has previously been considered, for example, in the context of biomechanics, where it has been shown that posture affects undulation properties. ⋯ FA decreased from approximately 0.7 to 0.5 when axonal undulation was introduced into the simulation model structure. Our results indicate that axonal undulation may play a role in diffusion measurements when investigating, for example, the optic and sciatic nerves and the spinal cord. The simulations also demonstrate that the stretching or compression of neuronal tissue comprising undulating axons alters the observed water diffusivity, suggesting that posture may be of importance for the outcome of diffusion MRI measurements.