Methods in molecular biology
-
Successful therapy for TBI disabilities awaits refinement in the understanding of TBI neurobiology, quantitative measurement of treatment-induced incremental changes in recovery trajectories, and effective translation to human TBI using quantitative methods and protocols that were effective to monitor recovery in preclinical models. Details of the specific neurobiology that underlies these injuries and effective quantitation of treatment-induced changes are beginning to emerge utilizing a variety of preclinical and clinical models (for reviews see (Morales et al., Neuroscience 136:971-989, 2005; Fujimoto et al., Neurosci Biobehav Rev 28:365-378, 2004; Cernak, NeuroRx 2:410-422, 2005; Smith et al., J Neurotrauma 22:1485-1502, 2005; Bose et al., J Neurotrauma 30:1177-1191, 2013; Xiong et al., Nat Rev Neurosci 14:128-142, 2013; Xiong et al., Expert Opin Emerg Drugs 14:67-84, 2009; Johnson et al., Handb Clin Neurol 127:115-128, 2015; Bose et al., Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects, CRC Press/Taylor & Francis, Boca Raton, 2015)). Preclinical models of TBI, essential for the efficient study of TBI neurobiology, benefit from the setting of controlled injury and optimal opportunities for biometric quantitation of injury and treatment-induced changes in the trajectories of disability. ⋯ Accordingly, use of this preclinical model offers an opportunity for (a) gaining a greater understanding of the relationships of TBI induced diffuse axonal injuries and associated long term disabilities, and (b) to provide a platform for quantitative assessment of treatment interactions upon the trajectories of TBI-induced disabilities. Using the impact acceleration closed head TBI model to induce mild/moderate injuries in the rat, we have observed and quantitated multiple morbidities commonly observed following TBI in humans (Bose et al., J Neurotrauma 30:1177-1191, 2013). This chapter describes methods and protocols used for TBI-induced multiple morbidity involving cognitive dysfunction, balance instability, spasticity and gait, and anxiety-like disorder.
-
The development and screening of pharmacological modulators of histone deacetylases (HDACs), and particularly sirtuins, is a promising field for the identification of new drugs susceptible to be used for treatment strategies in a large array of welfare-associated, autoimmune and oncologic diseases. Here we describe a comprehensive protocol to evaluate the impact of sirtuin-targeting drugs on inflammatory and innate immune responses in vitro and in a preclinical mouse model of endotoxemia. We first provide an overview on strategies to design in vitro experiments, then focus on the analysis of cytokine production by primary macrophages and RAW 267.7 macrophages at the mRNA and protein levels, and finally describe the setup and follow-up of a mouse model of inflammation-driven endotoxic shock.
-
Mass spectrometry-based phosphoproteomics is an indispensible technique used in the discovery and quantification of phosphorylation events on proteins in biological samples. The application of this technique to tissue samples is especially useful for the discovery of biomarkers as well as biological studies. We herein describe the application of a large-scale phosphoproteome analysis and SRM/MRM-based quantitation to develop a strategy for the systematic discovery and validation of biomarkers using tissue samples.
-
N-acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal hydrolase degrading various N-acylethanolamines at acidic pH. Since NAAA prefers anti-inflammatory and analgesic palmitoylethanolamide to other N-acylethanolamines as a substrate, its specific inhibitors are expected as a new class of anti-inflammatory and analgesic agents. Here, we introduce an NAAA assay system, using [(14)C]palmitoylethanolamide and thin-layer chromatography. The preparation of NAAA enzyme from native and recombinant sources as well as the chemical synthesis of N-[1'-(14)C]palmitoyl-ethanolamine is also described.
-
The brain has different responses to traumatic injury as a function of its developmental stage. As a model of injury to the immature brain, the piglet shares numerous similarities in regards to morphology and neurodevelopmental sequence compared to humans. This chapter describes a piglet scaled focal contusion model of traumatic brain injury that accounts for the changes in mass and morphology of the brain as it matures, facilitating the study of age-dependent differences in response to a comparable mechanical trauma.