Methods in molecular biology
-
Obtaining high phosphoproteome coverage requires specific enrichment of phosphorylated peptides from the often extremely complex peptide mixtures generated by proteolytic digestion of biological samples, as well as extensive chromatographic fractionation prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Due to the sample loss resulting from fractionation, this procedure is mainly performed when large quantities of sample are available. To make large-scale phosphoproteomics applicable to smaller amounts of protein we have recently combined highly specific TiO2-based phosphopeptide enrichment with sequential elution from immobilized metal affinity chromatography (SIMAC) for fractionation of mono- and multi-phosphorylated peptides prior to capillary scale hydrophilic interaction liquid chromatography (HILIC) based fractionation of monophosphorylated peptides. In the following protocol we describe the procedure step by step to allow for comprehensive coverage of the phosphoproteome utilizing only a few hundred micrograms of protein.
-
Titanium dioxide (TiO2) has very high affinity for phosphopeptides and in recent years it has become one of the most popular methods for phosphopeptide enrichment from complex biological samples. Peptide loading onto TiO2 resin in a highly acidic environment in the presence of 2,5-dihydroxybenzoic acid (DHB), phthalic acid, lactic acid, or glycolic acid has been shown to improve selectivity significantly by reducing unspecific binding of non-phosphorylated peptides. ⋯ TiO2 chromatography is extremely tolerant towards most buffers used in biological experiments, highly robust and as such it has become the method of choice in large-scale phosphoproteomics. Here we describe a batch mode protocol for phosphopeptide enrichment using TiO2 chromatographic material followed by desalting and concentration of the sample by reversed phase micro-columns prior to downstream MS and LC-MS/MS analysis.
-
Reversible protein phosphorylation is a key regulatory posttranslational modification that plays a significant role in major cellular signaling processes. Phosphorylation events can be systematically identified, quantified, and localized on protein sequence using publicly available bioinformatic tools. Here we present the software tools commonly used by the phosphoproteomics community, discuss their underlying principles of operation, and provide a protocol for large-scale phosphoproteome data analysis using the MaxQuant software suite.
-
Traumatic brain injury (TBI) is the leading cause of death in young adults in industrialized nations and in the developing world the WHO considers TBI a silent epidemic caused by an increasing number of traffic accidents. Despite the major improvement of TBI outcome in the acute setting in the past 20 years, the assessment, therapeutic interventions, and prevention of long-term complications remain a challenge. ⋯ In addition, limitations and advantages of each TBI model are mentioned. This will hopefully give an insight into the possibilities of each model and be of value in choosing one when designing a study.
-
Mass spectrometry-based phosphoproteomics is an indispensible technique used in the discovery and quantification of phosphorylation events on proteins in biological samples. The application of this technique to tissue samples is especially useful for the discovery of biomarkers as well as biological studies. We herein describe the application of a large-scale phosphoproteome analysis and SRM/MRM-based quantitation to develop a strategy for the systematic discovery and validation of biomarkers using tissue samples.