Methods in molecular biology
-
In recent years, mass spectrometry-based phosphoproteomics has propelled our knowledge about the regulation of cellular pathways. Nevertheless, typically applied bottom-up strategies have several limitations. Trypsin, the preferentially used proteolytic enzyme shows impaired cleavage efficiency in the vicinity of phosphorylation sites. ⋯ To overcome these limitations, we introduce an alternative and simple approach based on the usage of the nonspecific serine protease subtilisin, which enables a fast and reproducible digestion and provides access to "hidden" areas of the proteome. Thus, in a single LC-MS experiment >1800 phosphopeptides were confidently identified and localized from 125 μg of HeLa digest, compared to >2100 sites after tryptic digestion. While the overlap was less than 20 %, subtilisin allowed the identification of many phosphorylation sites that are theoretically not accessible via tryptic digestion, thus considerably increasing the coverage of the phosphoproteome.
-
Autoantibodies against myelin oligodendrocyte glycoprotein (MOG) occur in a proportion of patients with different inflammatory demyelinating diseases of the central nervous system, such as childhood multiple sclerosis (MS), acute disseminated encephalomyelitis (ADEM), and neuromyelitis optica spectrum disorders (NMOSD). We describe here in detail a sensitive cell-based assay that allows the identification of autoantibodies against MOG in serum.
-
"pHlash" is a novel bioluminescence-based pH sensor for measuring intracellular pH, which is developed based on Bioluminescence Resonance Energy Transfer (BRET). pHlash is a fusion protein between a mutant of Renilla luciferase (RLuc) and a Venus fluorophore. The spectral emission of purified pHlash protein exhibits pH dependence in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification. In this chapter, we describe an in vitro characterization of pHlash, and also in vivo assays including in yeast cells and in HeLa cells using pHlash as a cytoplasmic pH indicator.
-
Protein phosphorylation, a process in which kinases modify serines, threonines, and tyrosines with phosphoryl groups is of major importance in eukaryotic biology. Protein phosphorylation events are key initiators of signaling responses which determine cellular outcomes after environmental and metabolic stimuli, and are thus highly regulated. ⋯ Peptides are separated on a C18 reversed-phase column under basic conditions and fractions collected in timed intervals followed by concatenation of the fractions. Each Fraction is subsequently enriched for phosphopeptides using TiO2 followed by LC/MS analysis.
-
Immune checkpoint inhibitors (ICI) are a new class of drugs characterized by their ability to enhance antitumor immune responses through the blockade of critical cell surface receptors involved in the maintenance of peripheral tolerance. The recent approval of ICI targeting CTLA-4 or PD-1 for the treatment of cancer constitutes a major breakthrough in the field of oncology and demonstrates the potential of immune-mediated therapies in achieving durable cancer remissions. The identification of new immune regulatory pathways that could be targeted to reactivate or boost antitumor immunity is now a very active field of research. ⋯ In this chapter, we describe the general methodology to evaluate antitumor activity of ICI in immunocompetent mice. We outline protocols to reliably establish tumors in mice and generate lung metastasis through tail vein injections with the aim of testing the efficacy of ICI. We also present methods to analyze the composition of the tumor immune-infiltrate by multicolor flow cytometry.