Methods in molecular biology
-
Direct oral anticoagulants (DOACs) can be quantified using methods that can be performed in any clinical or research laboratory using manual or automated instrument platforms. Dabigatran etexilate, the oral direct thrombin inhibitor, can be quantified by drug-calibrated clot or chromogenic-based assays using either thrombin or ecarin as substrates. Oral direct anti-Xa inhibitors, such as rivaroxaban, apixaban, and edoxaban, can be quantified with drug-calibrated anti-Xa kits or reagents as typically used for measuring heparins (unfractionated, low molecular weight, or pentasaccharides).
-
A true and accurate bottom-up global proteomic measurement will only be achieved when all proteins in a sample can be digested efficiently and at least some peptides recovered on which to base an estimate of abundance. Integral membrane proteins make up around one-third of the proteome and require specialized protocols if they are to be successfully solubilized for efficient digestion by the enzymes used in bottom-up proteomics. ⋯ A subset of peptides is purified by reverse-phase solid-phase extraction and fractionated by strong-cation exchange prior to nano-liquid chromatography with data-dependent tandem mass spectrometry. For quantitative proteomics experiments a protocol is described for stable-isotope coding of peptides using dimethylation of primary amines allowing for three-way sample multiplexing.
-
The smallpox vaccine based on the vaccinia virus was successfully used to eradicate smallpox, but although very effective, it was a very reactogenic vaccine and responsible for the deaths of one to two people per million vaccinated. Modified Vaccinia virus Ankara (MVA) is an attenuated derivative, also used in the smallpox eradication campaign and now being developed as a recombinant viral vector to produce vaccines against infectious diseases and cancer. MVA can encode one or more foreign antigens and thus can function as a multivalent vaccine. ⋯ Many clinical trials of these new vaccines have been conducted, and the safety of MVA is now well documented. Immunogenicity is influenced by the dose and vaccination regimen, and information on the efficacy of MVA-vectored vaccines is now beginning to accumulate. In this chapter, we provide protocols for generation, isolation, amplification, and purification of recombinant MVA for preclinical and clinical evaluation.
-
In various biomedical applications that collect, handle, and manipulate data, the amounts of data tend to build up and venture into the range identified as bigdata. In such occurrences, a design decision has to be taken as to what type of database would be used to handle this data. ⋯ However, it still has paramount importance to understand the interrelation that exists between biomedical big data and relational databases. This chapter will review the pros and cons of using relational databases to store biomedical big data that previous researches have discussed and used.
-
In this chapter we describe the workflow we use for labeled quantitative proteomics analysis using tandem mass tags (TMT) starting with the sample preparation and ending with the multivariate analysis of the resulting data. We detail the step-by-step process from sample processing, labeling, fractionation, and data processing using Proteome Discoverer through to data analysis and interpretation in the context of a multi-run experiment. The final analysis and data interpretation rely on an R package we call TMTPrepPro, which are deployed on a local GenePattern server, and used for generating various outputs which are also outlined herein.