Methods in molecular biology
-
For decades, researchers have used animal self-administration models to examine the effects drugs of abuse have on physiology and behavior. Sophisticated self-administration procedures have been developed to model many different aspects of drug addiction. ⋯ In this way, animals can hold the lever down for any duration of time thereby self-administering any dose on a continuous spectrum. This procedure eliminates some of the ambiguity in translating results from effects only observed at one unit dose and allows examination of which dose the animal "prefers" at different times.
-
Cocaine self-administration provides a methodology allowing researchers to study changes in distinct aspects of drug-taking behavior that model behaviors observed in drug addicts. Traditionally, self-administration schedules were designed to independently study changes in drug-taking behaviors (e.g., rate of responding, reinforcing efficacy, etc.). The threshold self-administration procedure was developed to measure two distinct dependent measures within the same experimental session that are important in the study of drug addiction: the maximal price an animal expends to self-administer cocaine and an animal's preferred level of cocaine consumption when available at a low behavioral cost.
-
Amplification of the gene encoding the epidermal growth factor receptor (EGFR) occurs commonly in glioblastoma (GBM), leading to activation of downstream kinases, including phosphatidylinositol 3'-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR). A serine-threonine kinase, mTOR controls cell growth by regulating mRNA translation, metabolism, and autophagy; acting as both a downstream effector and upstream regulator of PI3K. These signaling functions are distributed between at least two distinct complexes, mTORC1 and mTORC2 with respect to pathway specificity. We have investigated mTOR signaling in glioma cells with the allosteric mTORC1 inhibitor rapamycin, the mTORC1/2 inhibitor Ku-0063794, a dual PI3K/mTORC1/2 kinase inhibitor PI-103, and siRNA against raptor, rictor, or mTOR, and evaluated the value of mTOR inhibitors for the treatment of glioblastoma.
-
Central neuropathic pain is associated with many disease states including multiple sclerosis, stroke, and spinal cord injury, and is poorly managed. One type of central neuropathic pain that is particularly debilitating and challenging to treat is pain that occurs below the level of injury (below-level pain). The study of central neuropathic pain is commonly performed using animal models of stroke and spinal cord injury. ⋯ The second was developed to accommodate intrathecal application of pharmacological manipulations. This model provides an additional means by which to investigate central pain states associated with spinal cord injury, including below-level pain. Finally, a brief discussion of at-level pain measurement is described as it has been suggested in the literature that the mechanisms underlying below- and at-level pain are different.
-
All investigators face the same challenge - the highly competitive nature of the grant review process. Innovation alone is not enough to ensure grant supported funding. ⋯ Therefore, specific granting mechanisms and program initiatives target translational research studies. This chapter provides grant writing tips and lists resources that may prove helpful for new investigators seeking research funding in support of translational research, biobanking, and research utilizing molecular biomarkers.