Methods in molecular biology
-
Amplification of the gene encoding the epidermal growth factor receptor (EGFR) occurs commonly in glioblastoma (GBM), leading to activation of downstream kinases, including phosphatidylinositol 3'-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR). A serine-threonine kinase, mTOR controls cell growth by regulating mRNA translation, metabolism, and autophagy; acting as both a downstream effector and upstream regulator of PI3K. These signaling functions are distributed between at least two distinct complexes, mTORC1 and mTORC2 with respect to pathway specificity. We have investigated mTOR signaling in glioma cells with the allosteric mTORC1 inhibitor rapamycin, the mTORC1/2 inhibitor Ku-0063794, a dual PI3K/mTORC1/2 kinase inhibitor PI-103, and siRNA against raptor, rictor, or mTOR, and evaluated the value of mTOR inhibitors for the treatment of glioblastoma.
-
Spinal cord injury-induced pain is a common clinical problem affecting adversely the quality of daily lives of spinal cord injured patients. Management with current pain medications can only lead to partial pain relief in some spinal cord injured patients, which is usually associated with unfavorable side effects. ⋯ We describe here the generation of a spinal cord contusion injury model that mimics the etiology and phenotypes of chronic pain states in spinal cord injured patients. Therefore, this model can be a useful tool for studying spinal cord injury mechanisms, functional recovery, research, and development of new medications for better functional and symptomatic improvements, including pain management.
-
All investigators face the same challenge - the highly competitive nature of the grant review process. Innovation alone is not enough to ensure grant supported funding. ⋯ Therefore, specific granting mechanisms and program initiatives target translational research studies. This chapter provides grant writing tips and lists resources that may prove helpful for new investigators seeking research funding in support of translational research, biobanking, and research utilizing molecular biomarkers.
-
The role of membrane proteins is critical for regulation of physiologic and pathologic cellular processes. Hence it is not surpassing that membrane proteins make ∼70% of contemporary drug targets. Quantitative profiling of membrane proteins using mass spectrometry (MS)-based proteomics is critical in a quest for disease biomarkers and novel cancer drugs. ⋯ After mixing, the differentially labeled peptides are fractionated using off-line strong cation exchange (SCX) followed by on-line reversed phase nanoflow reversed-phase liquid chromatography (nanoRPLC)-MS identification/quantiation of peptides/proteins. The use of methanol-based buffers in the context of the post-digestion (18)O exchange/labeling eliminates the need for detergents or chaotropes that interfere with LC separations and peptide ionization. Sample losses are minimized because solubilization, digestion, and stable isotope labeling are carried out in a single tube, avoiding any sample transfer or buffer exchange between these steps.
-
Translational bioinformatics plays an indispensable role in transforming psychoneuroimmunology (PNI) into personalized medicine. It provides a powerful method to bridge the gaps between various knowledge domains in PNI and systems biology. Translational bioinformatics methods at various systems levels can facilitate pattern recognition, and expedite and validate the discovery of systemic biomarkers to allow their incorporation into clinical trials and outcome assessments. ⋯ Methods based on data integration, data mining, and knowledge representation are essential elements in building health information systems such as electronic health records and computerized decision support systems. Data integration of genes, pathophysiology, and behaviors are needed for a broad range of PNI studies. Knowledge discovery approaches such as network-based systems biology methods are valuable in studying the cross-talks among pathways in various brain regions involved in disorders such as Alzheimer's disease.