NeuroImage
-
Classic serotonergic psychedelics are remarkable for their capacity to induce reversible alterations in consciousness of the self and the surroundings, mediated by agonism at serotonin 5-HT2A receptors. The subjective effects elicited by dissociative drugs acting as N-methyl-D-aspartate (NMDA) antagonists (e.g. ketamine and phencyclidine) overlap in certain domains with those of serotonergic psychedelics, suggesting some potential similarities in the brain activity patterns induced by both classes of drugs, despite different pharmacological mechanisms of action. We investigated source-localized magnetoencephalography recordings to determine the frequency-specific changes in oscillatory activity and long-range functional coupling that are common to two serotonergic compounds (lysergic acid diethylamide [LSD] and psilocybin) and the NMDA-antagonist ketamine. ⋯ After applying the same methodology to functional connectivity values, we observed a pattern of occipital, parietal and frontal decreases in the low alpha and theta bands that were specific to LSD and psilocybin, as well as decreases in the low beta band common to the three drugs. Our results represent a first effort in the direction of quantifying the similarity of large-scale brain activity patterns induced by drugs of different mechanism of action, confirming the link between changes in theta and alpha oscillations and 5-HT2A agonism, while also revealing the decoupling of activity in the beta band as an effect shared between NMDA antagonists and 5-HT2A agonists. We discuss how these frequency-specific convergences and divergences in the power and functional connectivity of brain oscillations might relate to the overlapping subjective effects of serotonergic psychedelics and glutamatergic dissociative compounds.
-
Traditional resting-state functional magnetic resonance imaging (fMRI) is mainly based on the blood oxygenation level-dependent (BOLD) contrast. The oxygen extraction fraction (OEF) represents an important parameter of brain metabolism and is a key biomarker of tissue viability, detecting the ratio of oxygen utilization to oxygen delivery. Investigating spontaneous fluctuations in the OEF-weighted signal is crucial for understanding the underlying mechanism of brain activity because of the immense energy budget during the resting state. ⋯ Moreover, voxel-wise test-retest reliability comparisons across the whole brain demonstrated that the reliability of resting-state brain activity based on the OEF contrast was moderate for the network indices and high for the local activity indices, especially for ReHo. Although the reliabilities of the OEF-based indices were generally lower than those based on BOLD, the reliability of OEF-ReHo was slightly higher than that of BOLD-ReHo, with a small effect size, which indicated that OEF-ReHo could be used as a reliable index for characterizing resting-state local brain activity as a complement to BOLD. In conclusion, OEF can be used as an effective contrast to study resting-state brain activity with a medium to high test-retest reliability.
-
The sensitivity to subject motion is one of the major challenges in functional MRI (fMRI) studies in which a precise alignment of images from different time points is required to allow reliable quantification of brain activation throughout the scan. Especially the long measurement times and laborious fMRI tasks add to the amount of subject motion found in typical fMRI measurements, even when head restraints are used. In case of moving subjects, prospective motion correction can maintain the relationship between spatial image information and subject anatomy by constantly adapting the image slice positioning to follow the subject in real time. ⋯ An analysis of temporal signal-to-noise ratio as well as brain activation results shows high consistency between the results before and after additional retrospective motion correction when using the proposed technique, indicating successful prospective motion correction. The comparison of absolute tSNR values does not show an improvement compared to using retrospective motion correction alone. However, the improved temporal resolution may provide improved tSNR in the presence of more exaggerated intra-volume motion.
-
A key event in the pathophysiology of traumatic brain injury (TBI) is the influx of substantial amounts of Ca2+ into neurons, particularly in the thalamus. Detection of this calcium influx in vivo would provide a window into the biochemical mechanisms of TBI with potentially significant clinical implications. In the present work, our central hypothesis was that the Ca2+ influx could be imaged in vivo with the relatively recent MRI technique of quantitative susceptibility mapping (QSM). ⋯ At week 4, calcifications were found in the ipsilateral thalamus of 25-50% of animals after a single TBI and 83% of animals after repeated mild TBI. The location and appearance of calcifications on stained sections was consistent with the appearance on the in vivo susceptibility maps (correlation of volumes: r = 0.7). Our findings suggest that persistent calcium deposits represent a primary pathology of repeated injury and that FPI-QSM has the potential to become a sensitive tool for studying pathophysiology related to mild TBI in vivo.
-
Growing evidence from the dynamical analysis of functional neuroimaging data suggests that brain function can be understood as the exploration of a repertoire of metastable connectivity patterns ('functional brain networks'), which potentially underlie different mental processes. The present study characterizes how the brain's dynamical exploration of resting-state networks is rapidly modulated by intravenous infusion of psilocybin, a tryptamine psychedelic found in "magic mushrooms". We employed a data-driven approach to characterize recurrent functional connectivity patterns by focusing on the leading eigenvector of BOLD phase coherence at single-TR resolution. ⋯ Recurrent BOLD PL states revealed high spatial overlap with canonical resting-state networks. Notably, a PL state forming a frontoparietal subsystem was strongly destabilized after psilocybin injection, with a concomitant increase in the probability of occurrence of another PL state characterized by global BOLD phase coherence. These findings provide evidence of network-specific neuromodulation by psilocybin and represent one of the first attempts at bridging molecular pharmacodynamics and whole-brain network dynamics.