NeuroImage
-
Traditional resting-state functional magnetic resonance imaging (fMRI) is mainly based on the blood oxygenation level-dependent (BOLD) contrast. The oxygen extraction fraction (OEF) represents an important parameter of brain metabolism and is a key biomarker of tissue viability, detecting the ratio of oxygen utilization to oxygen delivery. Investigating spontaneous fluctuations in the OEF-weighted signal is crucial for understanding the underlying mechanism of brain activity because of the immense energy budget during the resting state. ⋯ Moreover, voxel-wise test-retest reliability comparisons across the whole brain demonstrated that the reliability of resting-state brain activity based on the OEF contrast was moderate for the network indices and high for the local activity indices, especially for ReHo. Although the reliabilities of the OEF-based indices were generally lower than those based on BOLD, the reliability of OEF-ReHo was slightly higher than that of BOLD-ReHo, with a small effect size, which indicated that OEF-ReHo could be used as a reliable index for characterizing resting-state local brain activity as a complement to BOLD. In conclusion, OEF can be used as an effective contrast to study resting-state brain activity with a medium to high test-retest reliability.
-
The sensitivity to subject motion is one of the major challenges in functional MRI (fMRI) studies in which a precise alignment of images from different time points is required to allow reliable quantification of brain activation throughout the scan. Especially the long measurement times and laborious fMRI tasks add to the amount of subject motion found in typical fMRI measurements, even when head restraints are used. In case of moving subjects, prospective motion correction can maintain the relationship between spatial image information and subject anatomy by constantly adapting the image slice positioning to follow the subject in real time. ⋯ An analysis of temporal signal-to-noise ratio as well as brain activation results shows high consistency between the results before and after additional retrospective motion correction when using the proposed technique, indicating successful prospective motion correction. The comparison of absolute tSNR values does not show an improvement compared to using retrospective motion correction alone. However, the improved temporal resolution may provide improved tSNR in the presence of more exaggerated intra-volume motion.
-
A key event in the pathophysiology of traumatic brain injury (TBI) is the influx of substantial amounts of Ca2+ into neurons, particularly in the thalamus. Detection of this calcium influx in vivo would provide a window into the biochemical mechanisms of TBI with potentially significant clinical implications. In the present work, our central hypothesis was that the Ca2+ influx could be imaged in vivo with the relatively recent MRI technique of quantitative susceptibility mapping (QSM). ⋯ At week 4, calcifications were found in the ipsilateral thalamus of 25-50% of animals after a single TBI and 83% of animals after repeated mild TBI. The location and appearance of calcifications on stained sections was consistent with the appearance on the in vivo susceptibility maps (correlation of volumes: r = 0.7). Our findings suggest that persistent calcium deposits represent a primary pathology of repeated injury and that FPI-QSM has the potential to become a sensitive tool for studying pathophysiology related to mild TBI in vivo.
-
Growing evidence from the dynamical analysis of functional neuroimaging data suggests that brain function can be understood as the exploration of a repertoire of metastable connectivity patterns ('functional brain networks'), which potentially underlie different mental processes. The present study characterizes how the brain's dynamical exploration of resting-state networks is rapidly modulated by intravenous infusion of psilocybin, a tryptamine psychedelic found in "magic mushrooms". We employed a data-driven approach to characterize recurrent functional connectivity patterns by focusing on the leading eigenvector of BOLD phase coherence at single-TR resolution. ⋯ Recurrent BOLD PL states revealed high spatial overlap with canonical resting-state networks. Notably, a PL state forming a frontoparietal subsystem was strongly destabilized after psilocybin injection, with a concomitant increase in the probability of occurrence of another PL state characterized by global BOLD phase coherence. These findings provide evidence of network-specific neuromodulation by psilocybin and represent one of the first attempts at bridging molecular pharmacodynamics and whole-brain network dynamics.
-
Machine learning is increasingly being applied to neuroimaging data. However, most machine learning algorithms have not been designed to accommodate neuroimaging data, which typically has many more data points than subjects, in addition to multicollinearity and low signal-to-noise. Consequently, the relative efficacy of different machine learning regression algorithms for different types of neuroimaging data are not known. ⋯ Random Forest also produced a moderate performance for small effect sizes, but could do so across all sample sizes. Machine learning techniques also improved prediction accuracy for multiple regression. These data provide empirical evidence for the differential performance of various machines on neuroimaging data, which are dependent on number of sample size, features and effect size.