NeuroImage
-
Mapping the activity of the human mesolimbic dopamine system by BOLD-fMRI is a tempting approach to non-invasively study the action of the brain reward system during different experimental conditions. However, the contribution of dopamine release to the BOLD signal is disputed. To assign the actual contribution of dopaminergic and non-dopaminergic VTA neurons to the formation of BOLD responses in target regions of the mesolimbic system, we used two optogenetic approaches in rats. ⋯ Again, we found activations only for less-specific stimulation. Based on these results we conclude that canonical BOLD responses in the reward system represent mainly the activity of non-dopaminergic neurons. Thus, the minor effects of projecting dopaminergic neurons are concealed by non-dopaminergic activity, a finding which highlights the importance of a careful interpretation of reward-related human fMRI data.
-
Positron emission tomography (PET) is a widely used imaging modality, providing insight into both the biochemical and physiological processes of human body. Usually, a full dose radioactive tracer is required to obtain high-quality PET images for clinical needs. This inevitably raises concerns about potential health hazards. ⋯ Furthermore, a concatenated 3D c-GANs based progressive refinement scheme is also proposed to further improve the quality of estimated images. Validation was done on a real human brain dataset including both the normal subjects and the subjects diagnosed as mild cognitive impairment (MCI). Experimental results show that our proposed 3D c-GANs method outperforms the benchmark methods and achieves much better performance than the state-of-the-art methods in both qualitative and quantitative measures.
-
Non-invasive brain stimulation to target specific network activity patterns, e.g. transcranial alternating current stimulation (tACS), has become an essential tool to understand the causal role of neuronal oscillations in cognition and behavior. However, conventional sinusoidal tACS limits the ability to record neuronal activity during stimulation and lacks spatial focality. One particularly promising new tACS stimulation paradigm uses amplitude-modulated (AM) high-frequency waveforms (AM-tACS) with a slow signal envelope that may overcome the limitations. ⋯ Our analysis of the carrier frequency suggests that there might be a trade-off between the use of high-frequency carriers and the stimulation amplitude required for successful entrainment. Together, our computational simulations support the use of slow-envelope high frequency carrier AM waveforms as a tool for noninvasive modulation of brain oscillations. More empirical data will be needed to identify the optimal stimulation parameters and to evaluate tolerability and safety of both, AM- and conventional tACS.
-
This study aimed to investigate which type of group (e.g., consisting of less-creative or highly-creative individuals) would perform better in solving creativity problems, and explore the underlying inter-brain neural correlates between team members. A preliminary test (an alternative-uses task) was performed to rank individuals' level of creativity, and divide participants into three types of dyads: high-high (two highly-creative individuals), low-low (two less-creative individuals), and high-low (one highly-creative and one less-creative individual). Dyads were then asked to solve a realistic presented problem (RPP; a typical creativity problem) during which a functional near-infrared spectroscopy (fNIRS)-based hyperscanning device was used to record the variation of interpersonal brain synchronization (IBS). ⋯ In the rTPJ, the IBS in the low-low dyads was only stronger than that of the high-low dyads. Besides, the IBS at rDLPFC and rTPJ regions in the low-low dyads was positively correlated with their cooperation behaviour and group creative performance. These findings indicated when two less-creative individuals worked on a creativity problem together, they tended to cooperate with each other (indicated by both behaviour index and increased IBS at rDLPFC and rTPJ), which benefited their creative performance.
-
Multi-echo gradient echo (mGRE) sequences have been widely adapted in clinical and scientific practice for different purposes to their capability of performing Dixon MRI, generating multi-contrast images and extracting multi-parametric maps. This work aims to extend mGRE-based techniques for imaging whole head, where further technical developments are required due to the co-existence of fat and large B0 inhomogeneity in regions such as the skull base and neck. Specifically, bipolar mGRE data were acquired with a single sequence that contains both a short echo-spacing (ΔTE) echo train to capture water-fat and B0 phase shifts (for proton density fat-fraction (FF) and B0 mapping) and a longer ΔTE echo train (and long echo times) to capture subtle susceptibility variations and R2* information. ⋯ An automated processing pipeline was implemented to use the FF and B0 maps determined from the short-TE train to compensate for the effects of fat, remove the background phase for whole-head quantitative susceptibility mapping, and reduce the difficulty of spatial phase unwrapping of the long echo-time data. Data from healthy volunteers imaged on a 3 T scanner along with phantom validation are presented. Co-registered quantitative multi-parametric maps (FF, B0 inhomogeneity, R2*, local frequency shift and quantitative susceptibility) and multi-contrast images covering the whole head were successfully generated in processing times of several minutes.