Neuromodulation : journal of the International Neuromodulation Society
-
Newer generation deep brain stimulation (DBS) systems have recently become available in the United States. Data on real-life experience are limited. We present our initial experience incorporating newer generation DBS with Parkinson's disease (PD) and essential tremor (ET) patients. Newer systems allow for smart energy delivery and more intuitive programming and hardware modifications including constant current and directional segmented contacts. ⋯ The therapeutic window of newer systems, whether or not directionality was used, was significantly greater than that of the legacy system, which suggests increased benefit and programming options. Improvements in hardware and programming interfaces in the newer systems may also contribute to wider therapeutic windows. We expect that as we alter workflow associated with newer technology, more patients will use directionality, and amplitudes will become lower.
-
Unilateral subthalamic nucleus (STN) deep brain stimulation (DBS) for Parkinson's disease (PD) improves ipsilateral symptoms, but how this occurs is not well understood. We investigated whether unilateral STN DBS suppresses contralateral STN beta activity in the local field potential (LFP), since previous research has shown that activity in the beta band can correlate with the severity of contralateral clinical symptoms and is modulated by DBS. ⋯ Unilateral STN DBS suppresses contralateral STN beta LFP. This indicates that unilateral STN DBS modulates bilateral basal ganglia networks. It remains unclear whether this mechanism accounts for the ipsilateral motor improvements.
-
The P50, a positive auditory-evoked potential occurring 50 msec after an auditory click, has been characterized extensively with electroencephalography (EEG) to detect aberrant auditory electrophysiology in disorders like schizophrenia (SZ) where 61-74% have an auditory gating deficit. The P50 response occurs in primary auditory cortex and several thalamocortical regions. In rodents, the gated P50 response has been identified in the reticular thalamic nucleus (RT)-a deep brain structure traversed during deep brain stimulation (DBS) targeting of the ventral intermediate nucleus (VIM) of the thalamus to treat essential tremor (ET) allowing for interspecies comparison. The goal was to utilize the unique opportunity provided by DBS surgery for ET to map the P50 response in multiple deep brain structures in order to determine the utility of intraoperative P50 detection for facilitating DBS targeting of auditory responsive subterritories. ⋯ Detection of P50 response intraoperatively may guide DBS targeting RT and subterritories within CN head/body interface-DBS targets with the potential to treat psychosis and shown to modulate schizophrenia-like aberrancies in mouse models.
-
Review Practice Guideline
Transcranial Magnetic Stimulation for Pain, Headache, and Comorbid Depression: INS-NANS Expert Consensus Panel Review and Recommendation.
While transcranial magnetic stimulation (TMS) has been studied for the treatment of psychiatric disorders, emerging evidence supports its use for pain and headache by stimulating either motor cortex (M1) or dorsolateral prefrontal cortex (DLPFC). However, its clinical implementation is hindered due to a lack of consensus in the quality of clinical evidence and treatment recommendation/guideline(s). Thus, working collaboratively, this multinational multidisciplinary expert panel aims to: 1) assess and rate the existing outcome evidence of TMS in various pain/headache conditions; 2) provide TMS treatment recommendation/guidelines for the evaluated conditions and comorbid depression; and 3) assess the cost-effectiveness and technical issues relevant to the long-term clinical implementation of TMS for pain and headache. ⋯ After extensive literature review, the panel provided recommendations and treatment guidelines for TMS in managing neuropathic pain and headaches. In addition, the panel also recommended more outcome and cost-effectiveness studies to assess the feasibility of the long-term clinical implementation of the treatment.
-
The methodology used for the application of repetitive transcranial magnetic stimulation (TMS) is such that it may induce a placebo effect. Respectively, adverse events (AEs) can occur when using a placebo, a phenomenon called nocebo. The primary aim of our meta-analysis is to establish the nocebo phenomena during TMS. Safety and tolerability of TMS were also studied. ⋯ TMS is a safe and well-tolerated intervention. Nocebo phenomena do occur during TMS treatment and should be acknowledged during clinical trial design and daily clinical practice.