Neuromodulation : journal of the International Neuromodulation Society
-
Randomized Controlled Trial
Integrative Effects of Transcutaneous Electrical Acustimulation and Autonomic-Endocrine Mechanisms on Postprocedural Recovery in Patients With Endoscopic Retrograde Cholangio-Pancreatography.
This study aimed to investigate the integrative effects and mechanisms of transcutaneous electrical acustimulation (TEA) on postprocedural recovery from endoscopic retrograde cholangio-pancreatography (ERCP). ⋯ TEA at PC6 and ST36 accelerates the post-ERCP recovery, reflected as the improvement in GI motility and amelioration of abdominal pain, and suppression of the inflammatory cytokine TNF-α may mediate through both autonomic and ghrelin-related mechanisms.
-
Randomized Controlled Trial Multicenter Study
Long-Term Treatment of Chronic Postamputation Pain With Bioelectric Nerve Block: Twelve-Month Results of the Randomized, Double-Blinded, Cross-Over QUEST Study.
The multicenter, randomized, double-blinded, active-sham controlled trial (high-freQUEncy nerve block for poST amputation pain [QUEST]) was conducted to show the safety and efficacy of a novel, peripherally placed high-frequency nerve block (HFNB) system in treating chronic postamputation pain (PAP) in patients with lower limb amputations. The primary outcomes from QUEST were reported previously. This study presents the long-term, single-cross-over, secondary outcomes of on-demand HFNB treatment for chronic PAP. ⋯ Overall, HFNB delivered directly to the damaged peripheral nerve provided sustained, on-demand relief of acute PAP exacerbations, reduced opioid utilization, and improved QOL for patients with lower limb amputations with chronic PAP.
-
Randomized Controlled Trial
H-Coil Repetitive Transcranial Magnetic Stimulation Relieves Pain and Symptoms of Anxiety and Depression in Patients With Chronic Peripheral Neuropathic Pain: A Randomized Sham-Controlled Crossover Study.
This study aimed to investigate the analgesic effects of H-coil repetitive transcranial magnetic stimulation (rTMS) primarily targeting the hand area of the primary motor cortex (M1) in patients with peripheral neuropathic pain. Given that the H-coil has a wider reach than conventional coils, there is a possibility that targeting the hand motor cortex also may stimulate prefrontal areas. Thus, we also aimed to examine whether rTMS with an M1 target could produce effects on psychologic outcomes. ⋯ The Clinicaltrials.gov registration number for the study is NCT05488808.
-
Randomized Controlled Trial
Transcutaneous Auricular Vagus Nerve Stimulation Attenuates Early Increases in Heart Rate Associated With the Cold Pressor Test.
Transcutaneous auricular vagus nerve stimulation (taVNS) may be useful in treating disorders characterized by chronic parasympathetic disinhibition. Acute taVNS decreases resting heart rate in healthy individuals, but little is known regarding the effects of taVNS on the cardiac response to an acute stressor. To investigate effects on the acute stress response, we investigated how taVNS affected heart rate changes during a cold pressor test (CPT), a validated stress induction technique that reliably elicits a sympathetic stress response with marked increases in heart rate, anxiety, stress, and pain. ⋯ The Clinicaltrials.gov registration number for the study is NCT00113453.
-
Randomized Controlled Trial
Theta Burst Stimulation of the Human Motor Cortex Modulates Secondary Hyperalgesia to Punctate Mechanical Stimuli.
Many chronic pain conditions show evidence of dysregulated synaptic plasticity, including the development and maintenance of central sensitization. This provides a strong rationale for neuromodulation therapies for the relief of chronic pain. However, variability in responses and low fidelity across studies remain an issue for both clinical trials and pain management, demonstrating insufficient mechanistic understanding of effective treatment protocols. ⋯ By defining the underlying mechanisms of TBS-driven synaptic plasticity in the nociceptive system, we offer new insight into disease mechanisms and provide targets for promoting functional recovery and repair in chronic pain. For clinical applications, this knowledge is critical for development of more efficacious and mechanisms-based neuromodulation protocols, which are urgently needed to address the chronic pain and opioid epidemics.