Neuromodulation : journal of the International Neuromodulation Society
-
Phantom limb pain (PLP) is a neuropathic condition in which pain is perceived as arising from an amputated limb. PLP is distinct from, although associated with, pain in the residual limb and nonpainful phantom sensations of the missing limb. Its treatment is extremely challenging; pharmaceutical options, while commonly employed, may be insufficient or intolerable. Neuromodulatory interventions such as spinal cord stimulation have generated mixed results and may be limited by poor somatotopic specificity. It was theorized that dorsal root ganglion (DRG) neuromodulation may be more effective. ⋯ DRG neuromodulation may be an effective tool in treating this pain etiology. Clinical outcomes in this report support recent converging evidence suggesting that the DRG may be the site of PLP generation and/or maintenance. Further research is warranted to elucidate mechanisms and optimal treatment pathways.
-
Computational modeling studies were performed to identify presynaptic elements of cortical neurons that are activated by subdural electrical stimulation. ⋯ This study examines the effects of subdural electrical stimulation on a high-density network consisting of several populations of multicompartment cell types. The effect of dendritic arbor structure on the axonal activation threshold is prominent in the case of multipolar neurons with large-diameter symmetric dendrites (basal/apical) that are oriented parallel to the electric field lines. The timing of presynaptic terminal activation after stimulation is not determined solely by the axonal delay (orthodromic propagation) but depends on the details of the applied stimulation field and axonal branching structure, which may be important factors in characterizing the effects of electrical stimulation in neuromodulation systems.
-
Electrical stimulation at the dorsal column (DC) and dorsal root (DR) may inhibit spinal wide-dynamic-range (WDR) neuronal activity in nerve-injured rats. The objective of this study was to determine if applying electrical conditioning stimulation (CS) at both sites provides additive or synergistic benefits. ⋯ These findings suggest that combined stimulation of DC and DR may not be superior to DC stimulation alone for inhibition of WDR neurons.
-
The purpose of this pilot study was to determine the safety and feasibility of a six-day protocol of in-hospital repetitive peripheral magnetic stimulation combined with intensive swallowing rehabilitation (rPMS-ISR) for poststroke dysphagia. ⋯ The six-day in-hospital RPMS-ISR protocol seems safe and feasible for poststroke patients with dysphagia. The combination protocol improved swallowing function. Further larger studies are needed to confirm its efficacy.
-
Deep brain stimulation (DBS) alleviates symptoms associated with some neurological disorders by stimulating specific deep brain targets. However, incomplete stimulation of the target region can provide suboptimal therapy, and spread of stimulation to tissue outside the target can generate side-effects. Existing DBS electrodes generate stimulation profiles that are roughly spherical, neither matching nor enabling the mapping of therapeutic targets. We present a novel electrode design and will perform computational modeling of the new design to investigate its use as a next generation DBS electrode. ⋯ The ability to better match the anatomy and compensate for targeting errors during implantation will enable strict localization of the generated stimulation fields to within target tissues, potentially providing more complete symptom alleviation while reducing the occurrence of side-effects.