Journal of neurophysiology
-
The effects of inferior alveolar nerve (IAN) transection on escape behavior and MDH neuronal activity to noxious and nonnoxious stimulation of the face were precisely analyzed. Relative thresholds for escape from mechanical stimulation applied to the whisker pad area ipsilateral to the transection were significantly lower than that for the contralateral and sham-operated whisker pad until 28 days after the transection, then returned to the preoperative level at 40 days after transection. A total of 540 neurons were recorded from the medullary dorsal horn (MDH) of the nontreated naive rats [low-threshold mechanoreceptive (LTM), 27; wide dynamic range (WDR), 31; nociceptive specific (NS), 11] and sham-operated rats with skin incision (LTM, 34; WDR, 30; NS, 23) and from the ipsilateral (LTM, 82; WDR, 82; NS, 31) and contralateral MDH relative to the IAN transection (LTM, 77; WDR, 82; NS, 33). ⋯ We could not observe any modulation of thermal responses of WDR and NS neurons following IAN transection. Also, no MDH neurons were significantly affected in the rats with sham operations. The present findings suggest that the increment of neuronal activity of WDR neurons in the MDH following IAN transection may play an important role in the development of the mechano-allodynia induced in the area adjacent to the area innervated by the injured nerve.
-
Bradykinin (BK), which has potent algesic and sensitizing effect on nociceptors, is of current interest in understanding the mechanisms of chronic pain. BK response is mediated by B2 receptor in normal conditions; however, findings that B1 receptor blockade alleviated hyperalgesia in inflammation have been highlighting the role of B1 receptor in pathological conditions. It has not yet been clear whether nociceptor activities are modified by B1 receptor agonists or antagonists during inflammation. ⋯ A B2 receptor antagonist (D-Arg-[Hyp3, Thi5,8,D-phe7]-BK) completely eliminated BK responses in inflamed rats, while B1 receptor antagonists (B 9958 and Des-Arg9-[Leu8]-BK) had no effect. Selective B1 receptor agonist (Des-Arg10-Kallidin) excited 46% (n = 13) of inflamed C-fibers at 10(-5) M concentration, which is 1,000 times higher than that of BK needed to excite the same percentage of inflamed C-fibers. We conclude that in chronically inflamed tissue, sensitivity of C-fiber nociceptors to BK, which is B2 receptor mediated, is strongly increased and that B1 receptor may not be important to a persistent inflammatory state, at least at the primary afferent level.
-
We investigated the effects of climbing fiber synchrony on the temporal dynamics of mossy fiber system throughput in populations of cerebellar Purkinje cells (PCs). A multielectrode technique was used in ketamine-anesthetized rats that allowed both complex and simple spikes (CSs and SSs) to be recorded from multiple PCs simultaneously in lobule crus IIa. Stimulation of the tongue area of the primary motor cortex (TM1) was used to evoke cerebro-cerebellar interaction. ⋯ SS rhythmicity also was modulated dynamically by CSs, such that it was depressed by CSs and facilitated by their absence. Like the modulations in SS rate, a given PC's modulation in SS rhythmicity did not require it to fire a CS but was, on those instances, equally correlated to the synchronous CSs of other PCs. The data indicate that the climbing fiber system controls the temporal dynamics of SS firing in populations of PCs by using synchrony to engage intracerebellar circuitry and modulate mossy fiber system throughput.
-
The main olfactory bulb receives a significant modulatory noradrenergic input from the locus coeruleus. Previous in vivo and in vitro studies showed that norepinephrine (NE) inputs increase the sensitivity of mitral cells to weak olfactory inputs. The cellular basis for this action of NE is not understood. ⋯ The current-voltage relationship in the absence and presence of PE indicated that the current induced by PE decreased near the equilibrium potential for potassium ions. In current-clamp recordings from bistable mitral cells, PE shifted the membrane potential from the downstate (-52 mV) toward the upstate (-40 mV), and significantly increased spike generation in response to perithreshold ON input. These findings indicate that NE excites mitral cells directly via alpha1 receptors, an effect that may underlie, at least in part, increased mitral cell responses to weak ON input during locus coeruleus activation in vivo.
-
The structure and function of the medial superior olive (MSO) is highly variable among mammals. In species with large heads and low-frequency hearing, MSO is adapted for processing interaural time differences. In some species with small heads and high-frequency hearing, the MSO is greatly reduced in size; in others, including those echolocating bats that have been examined, the MSO is large. ⋯ When presented with sinusoidally amplitude modulated tones, most neurons had low-pass filter characteristics with cutoffs between 100 and 300 Hz modulation frequency. For comparison with the sinusoidally modulated sounds, we presented trains of tone pips in which the pulse duration and interstimulus interval were varied. The results of these experiments indicated that it is not the modulation frequency but rather the interstimulus interval that determines the low-pass filter characteristics of MSO neurons.