Journal of neurophysiology
-
This study examined the effects of blocking neural activity in sensory motor cortex during early postnatal development on prehension. We infused muscimol, either unilaterally or bilaterally, into the sensory motor cortex of cats to block activity continuously between postnatal weeks 3-7. After stopping infusion, we trained animals to reach and grasp a cube of meat and tested behavior thereafter. ⋯ Reinactivation of the contralateral (left) cortex produced larger increases in reaching and grasping impairments than those produced by ipsilateral inactivation. This suggests that the impaired limb receives bilateral sensory motor cortex control but that control by the contralateral (initially silenced) cortex predominates. Our data are consistent with the hypothesis that the normal development of skilled motor behavior requires activity in sensory motor cortex during early postnatal life.
-
In vitro whole cell patch-clamp recording techniques were utilized to study silent pure-N-methyl-D-aspartate (NMDA) receptor-mediated synaptic responses in lamina II (substantia gelatinosa, SG) and lamina III of the spinal dorsal horn. To clarify whether these synapses are present in the adult and contribute to neuropathic pain, transverse lumbar spinal cord slices were prepared from neonatal, naive adult and adult sciatic nerve transected rats. In neonatal rats, pure-NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) were elicited in SG neurons either by focal intraspinal stimulation (n = 15 of 20 neurons) or focal stimulation of the dorsal root (n = 2 of 7 neurons). ⋯ Furthermore, in rats with chronic sciatic nerve transection, pure-NMDA EPSCs were elicited by focal intraspinal stimulation in only 2 of 45 SG neurons. Although a large increase in Abeta fiber evoked mixed alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and NMDA receptor-mediated synapses was detected after sciatic nerve injury, Abeta fiber-mediated pure-NMDA EPSCs were not evoked in SG neurons by dorsal root stimulation. Pure-NMDA receptor-mediated EPSCs are therefore a transient, developmentally regulated phenomenon, and, although they may have a role in synaptic refinement in the immature dorsal horn, they are unlikely to be involved in receptive field plasticity in the adult.
-
The neural relationships between eyelid movements and eye movements during spontaneous, voluntary, and reflex blinking in a group of healthy subjects were examined. Electromyographic (EMG) recording of the orbicularis oculi (OO) muscles was performed using surface electrodes. Concurrently, horizontal and vertical eye positions were recorded by means of the double magnetic induction (DMI) ring method. ⋯ Late components of the eye movements slightly precede the late components of the eyelid movement. Synchrony between late components of eyelid movements and eye movements as well as similarity of oblique eye movement components in different types of blinking suggest the existence of a premotor neural structure acting as a generator that coordinates impulses to different subnuclei of the oculomotor nucleus as well as the facial nerve nucleus during blinking independent from the ocular saccadic and/or vergence system. The profile and direction of the eye movement rotation during blinking gives support to the idea that it may be secondary to eyeball retraction; an extra cocontraction of the inferior and superior rectus muscle would be sufficient to explain both eye retraction and rotation in the horizontal vertical and torsional planes.
-
Antagonism of the chloride-cotransport system in hippocampal slices has been shown to block spontaneous epileptiform (i.e., hypersynchronized) discharges without diminishing excitatory synaptic transmission. Here we test the hypotheses that chloride-cotransport blockade, with furosemide or low-chloride (low-[Cl(-)](o)) medium, desynchronizes the firing activity of neuronal populations and that this desynchronization is mediated through nonsynaptic mechanisms. Spontaneous epileptiform discharges were recorded from the CA1 and CA3 cell body layers of hippocampal slices. ⋯ These data support our hypothesis that the anti-epileptic effects of chloride-cotransport antagonism in CA1 are mediated through the desynchronization of population activity. We hypothesize that interference with Na(+),K(+),2Cl(-) cotransport results in an increase in extracellular potassium ([K(+)](o)) that reduces the number of action potentials that are able to invade axonal arborizations and varicosities in all hippocampal subregions. This reduced efficacy of presynaptic action potential propagation ultimately leads to a reduction of synaptic drive and a desynchronization of the firing of CA1 pyramidal cells.
-
To investigate voltage-gated potassium channels underlying action potentials (APs), we simultaneously recorded neuronal APs and single K(+) channel activities, using dual patch-clamp recordings (1 whole cell and 1 cell-attached patch) in single-layer V neocortical pyramidal neurons of rat brain slices. A fast voltage-gated K(+) channel with a conductance of 37 pS (K(f)) opened briefly during AP repolarization. Activation of K(f) channels also was triggered by patch depolarization and did not require Ca(2+) influx. ⋯ This study provides direct evidence for different roles of various K(+) channels during action potentials in layer V neocortical pyramidal neurons. K(f) and K(A) channels contribute to AP repolarization, while K(A) channels also regulate repetitive firing. K(dr) channels also may function in regulating repetitive firing, whereas BK channels appear to be activated only in pathological conditions.