Journal of neurophysiology
-
The cellular mechanisms that underlie transient synaptic potentiation were studied in visual cortical slices of adult guinea pigs (> or = age 5 wk postnatal). Postsynaptic potentials (PSPs) elicited by stimulation of the white matter/layer VI border were recorded with conventional intracellular techniques from layer II/III neurons. Transient potentiation (average duration 23 +/- 3 min, mean +/- SE) was evoked by 60 low-frequency (0.1 Hz) pairings of weak afferent stimulation with coincident intracellular depolarizing pulses (80 ms) of the postsynaptic cell. ⋯ It did, however, block subsequent enhancement for several cells (2 of 4) that had previously had their inputs potentiated. Moreover, LNA increased the overall average magnitude of synaptic potentiation (with an additional +28%) when induction was successful. These results suggest that endogenous cortical nitric oxide production can both positively and negatively modulate this NMDA receptor-mediated type of synaptic plasticity.
-
Most communication sounds and most echolocation sounds, including those used by the big brown bat (Eptesicus fuscus), contain frequency-modulated (FM) components, including cyclical FM. Because previous studies have shown that some neurons in the inferior colliculus (IC) of this bat respond to linear FM sweeps but not to pure tones or noise, we asked whether these or other neurons are specialized for conveying information about cyclical FM signals. In unanesthetized bats, we tested the response of 116 neurons in the IC to pure tones, noise with various bandwidths, single linear FM sweeps, sinusoidally amplitude-modulated signals, and sinusoidally frequency-modulated (SFM) signals. ⋯ The SFM-selective neurons in the IC responded to a lower and more limited range of SFM rates than do neurons in the nuclei of the lateral lemniscus of this bat. Because the FM components of biological sounds usually have low rates of modulation, we suggest that the tuning of these neurons is related to biologically important sound parameters. The tuning could be used to detect FM in echolocation signals, modulations in high-frequency sounds that are generated by wing beats of some beetles, or social communication sounds of Eptesicus.
-
Dorsal root ganglion neurons from adult rats (> or = 200 g) were maintained in culture for between 1 and 3 days. Membrane currents generated by large neurons (50-75 microns apparent diameter) were recorded with the whole cell patch-clamp technique. Large neurons generated transient Na+ currents and at least two types of inward current that persisted throughout 200-ms voltage-clamp steps to +20 mV. ⋯ We conclude that the low-threshold current is a TTX-sensitive, persistent Na+ current. The persistent TTX-sensitive current contributed to steady-state membrane current from at least -70 mV to 0 mV, a wider potential range than predicted by activation-inactivation gating overlap for transient Na+ current. Because of its low threshold and fast activation kinetics, the persistent Na+ current is expected to play an important role in determining membrane excitability.
-
Spinal serotonin is derived entirely from bulbar sources and plays an important role in spinal modulatory processes, including pain modulation. Establishing the electrophysiological properties of SEROTONERGIC bulbospinal neurons in the pontomedullary raphe and reticular formation is critical to understanding the physiological role of serotonin in the spinal cord. Neurons were characterized by their responses to noxious stimulation and their background discharge pattern in the lightly anesthetized rat. ⋯ The probability of misclassification with the use of this discriminant function was estimated to be < 10%. Employing the discriminant function on a test group of cells whose immunochemical content was unknown revealed a population of SEROTONERGIC-LIKE cells that resembled the labeled SEROTONERGIC cells in background discharge pattern, response to noxious stimulation, and nuclear location. The discharge of pontomedullary SEROTONERGIC neurons is slow and steady, suggesting that these neurons may have a role in the tonic, rather than phasic, modulation of spinal processes.
-
Single-neuron activity was recorded in the prefrontal cortex of three monkeys during the performance of a spatial delayed alternation (DA) task and during the presentation of a variety of visual, auditory, and somatosensory stimuli. The aim was to study the relationship between mnemonic neuronal processing and other functional neuronal responsiveness at the single-neuron level in the prefrontal cortex. Recordings were performed in both experimental situations from 152 neurons. ⋯ This study provides further evidence about the significance of the dorsolateral prefrontal cortex in spatial working memory processing. Although a considerable number of all DA task-related neurons responded to visual, somatosensory, and auditory stimulation or to the movements of the monkey, most delay-related neurons engaged in the spatial DA task did not respond to extrinsic sensory stimulation. These results indicate that most prefrontal neurons firing selectively during the delay phase of the DA task are highly specialized and process only task-related information.