Journal of neurophysiology
-
1. We have studied the characteristics of the abnormal properties of damaged myelinated fibers (conduction velocity > 2.0 m/ s) after peripheral nerve injury in a novel in vitro model of the rat sciatic nerve/dorsal root ganglion/dorsal root (L4-5) preparation removed from control naíve or sham-operated rats and animals that had received sciatic neurectomy 12-24 days before the in vitro study. A total of 122-245 filaments were recorded in each dorsal root. ⋯ We present an in vitro model for the study of abnormal primary sensory activity in peripheral neuropathy. Although our data are consistent with in vivo electrophysiological findings in published reports, the proportion of damaged afferent fibers displaying spontaneous activity was significantly lower under in vitro conditions. This model may serve as a valuable tool for further physiological and pharmacological studies of peripheral neuropathy.
-
1. Presbycusis, age-related hearing loss, is an ever increasing problem in our aging society. It involves changes in both the peripheral and central portions of the auditory system. ⋯ The results of this study support the hypothesis that there is an age-related shift to higher intensities in the working range of most CIC units along with a small, selective deficit in inhibitory processing. When considered in conjunction with the mouse aging studies conducted by other researchers and with the results of a similar study of single units in the visual system (lateral geniculate nucleus) of young and aged rhesus monkeys, these results suggest that compensatory mechanisms are highly active in sensory systems as animals age. Despite deficits that lead to reduced input to the IC and neurochemical changes affecting neurotransmitter levels, IC neurons in aged rats are able to respond to most simple auditory stimuli in a fashion quite similar to that observed in young rats.
-
1. The main purposes of this study are to characterize the intracellular and extracellular responses of cells in superficial layers of entorhinal cortex (EC) in chronically epileptic animals, determine whether their altered physiology is dependent on being connected to hippocampus, and investigate whether there is evidence of augmented excitation and inhibitory interneuron disconnection. 2. Functional connectivity was maintained between the hippocampal area and the EC in vitro in a combined rat hippocampal-parahippocampal slice preparation by slicing with a vibratome at a 30-deg angle to the base of the brain. ⋯ IPSPs were not seen or markedly reduced at all stimulus intensities. These intracellular responses never resembled control responses. Intracellur responss correlated precisely in morphology and duration with extracellular field potentials. (ABSTRACT TRUNCATED)
-
Comparative Study
Changing directions of forthcoming arm movements: neuronal activity in the presupplementary and supplementary motor area of monkey cerebral cortex.
1. To understand roles played by two cortical motor areas, the presupplementary motor area (pre-SMA) and supplementary motor area (SMA), in changing planned movements voluntarily, cellular activity was examined in two monkeys (Macaca fuscata) trained to perform an arm-reaching task in which they were asked to press one of two target buttons (right or left) in three different task modes. 2. In the first mode (visual), monkeys were visually instructed to result and press either a right or left key in response to a forth coming trigger signal. ⋯ Neurons exhibiting the shift-related activity were distributed differentially among the two areas. In the pre-SMA, 31% of the neurons recorded showed the shift-related activity, whereas in the SMA, only 7% showed such an activity. These results suggest that pre-SMA and SMA play differential roles in updating the motor plans in accordance with current requirements.
-
1. The purpose of this study was to investigate a proposed role for the postsynaptic dorsal column (PSDC) pathway in mediating visceral nociceptive input into the dorsal column (DC) nuclei. 2. In one group of animals, the hypogastric nerves were sectioned, thereby restricting colorectal input into the cord to pelvic afferent pathways known to coverage on lower lumbar and sacral segments. ⋯ From the results of the studies described in this and the companion paper, we conclude that there is an important pelvic visceral nociceptive pathway involving PSDC neurons that synapse in the NG. The NG in turn activates neurons in the ventral posterolateral (VPL) nucleus of the thalamus. We presume that activation of VPL neurons by noxious visceral stimulation contributes to visceral pain sensation and thus that pelvic visceral pain depends largely on activity in the DC-medial lemniscus system.