Journal of neurophysiology
-
Comparative Study
Neuroprotection by propofol in acute mechanical injury: role of GABAergic inhibition.
1. Whole cell patch-clamp and extracellular field recordings were obtained from granule cells of the dentate gyrus in 400-microns-thick brain slices of the adult rat to determine the actions of the intravenous general anesthetic 2,6-diisopropylphenol (propofol) on acute neuronal survival and preservation of synaptic integrity after amputation of dendrites (dendrotomy), and to determine the role of gamma-aminobutyric acid-A (GABAA)-receptor-mediated inhibition in the neuroprotective effects of propofol. The actions of propofol were compared with those exerted by another widely used intravenous general anesthetic, 5-ethyl-5-[1-methylbutyl]-2-thiobarbituric acid (thiopental). 2. ⋯ The failure to rescue cells from dendrotomy-induced injury did not result from a decreased sensitivity of the GABAA receptors to the anesthetics, because the potentiating effects of the anesthetics on mIPSCs from control and dendrotomized neurons were not different. 7. These data indicate that propofol potentiates synaptic inhibition pre- and postsynaptically, and, when present during dendrotomy, it can protect neurons from acute mechanical-injury induced cell death via potentiation of GABAA receptor functions. However, propofol fails to provide neuroprotection against dendrotomy-induced changes in synaptic physiology.
-
1. The locations and connections of the smooth and saccadic eye movement subregions of the frontal eye field (FEFsem and FEFsac, respectively) were investigated in seven hemispheres of five Cebus monkeys. The supplementary eye field was also mapped in seven hemispheres and the hand/arm regions of the dorsal and ventral premotor areas were localized in five hemispheres. ⋯ These results suggest that there may be similar, but relatively independent, parallel corticocortical networks to control pursuit and saccadic eye movements. The weak connections between the middle temporal area (MT) and FEF suggest that the MT may not provide the major source of visuomotion inputs to the FEF, but that it rather plays a role in mediating visual information that is relayed from the striate and extrastriate cortices via MT to the parietal cortex and then to the FEF. In addition to the well-known neural connections between the lateral intraparietal area and the FEF, additional parietal projections have been demonstrated from the dorsomedial visual area area specifically to the FEFsac and from area 7m specifically to the FEFsem.
-
1. Whole cell patch-clamp recordings were obtained from identified cutaneous and muscle afferent neurons (33-60 microns diam) in dissociated L4 and L5 dorsal root ganglia (DRGs) from normal rats and from rats 2-3 wk after sciatic nerve ligation or crush injury. gamma-Aminobutyric acid (GABA)-induced conductance was compared in normal and injured neurons from both functional classes of sensory neurons. 2. Control cutaneous afferent neurons had a peak GABA-mediated conductance of 287 +/- 27 (SE) nS compared with 457 +/- 42 nS for control muscle afferent neurons. 3. ⋯ However, action potential waveform was not altered by crush injury, suggesting a differential regulation of these two properties in cutaneous afferent neurons. 6. These data indicate that injury-induced plasticity of GABAA-receptor-mediated conductance and action potential waveform occurs in cutaneous but not muscle afferent DRG neurons. It appears that peripherally derived influences are critical in maintaining the electrophysiological phenotype of cutaneous afferent neurons but not muscle afferent neurons.
-
1. The purpose of this study was to investigate a proposed role for the postsynaptic dorsal column (PSDC) pathway in mediating visceral nociceptive input into the dorsal column (DC) nuclei. 2. In one group of animals, the hypogastric nerves were sectioned, thereby restricting colorectal input into the cord to pelvic afferent pathways known to coverage on lower lumbar and sacral segments. ⋯ From the results of the studies described in this and the companion paper, we conclude that there is an important pelvic visceral nociceptive pathway involving PSDC neurons that synapse in the NG. The NG in turn activates neurons in the ventral posterolateral (VPL) nucleus of the thalamus. We presume that activation of VPL neurons by noxious visceral stimulation contributes to visceral pain sensation and thus that pelvic visceral pain depends largely on activity in the DC-medial lemniscus system.
-
1. The involvement of N-methyl-D-aspartate (NMDA) receptors in thalamocortical transmission has been demonstrated in early postnatal development, but could not be determined so far in adult animals. We used thalamocortical slices from brains of mature mice to examine whether NMDA receptors exist in adult thalamocortical synapses, and what is their potential contribution to thalamocortical synaptic responses. 2. ⋯ All cells that showed a monosynaptic response to electrical thalamic stimulation also exhibited a barrage of mixed synaptic responses to thalamic glutamate application. The amplitude of these synaptic events was dependent strongly on the membrane voltage, and the application of APV to the cortex abolished the events completely. 7. Our results demonstrate that, in adult animals, both thalamocortical and intracortical synaptic pathways utilize NMDA as well as non-NMDA receptors.