Journal of neurophysiology
-
The contribution of the zona incerta (ZI) of the thalamus on spike-wave discharges (SWDs) was investigated. Chronic recordings of bilateral cortices, bilateral vibrissa muscle, and unilateral ZI were performed in Long-Evans rats to examine the functional role of SWDs. Rhythmic ZI activity appeared at the beginning of SWD and was accompanied by higher-oscillation frequencies and larger spike magnitudes. ⋯ A unilateral ZI lesion resulted in a significant reduction of 7- to 12-Hz power of both the ipsilateral cortical and contralateral vibrissae muscle activities during SWDs. Intraincertal microinfusion of muscimol showed a significant inhibition on SWDs. Our present data suggest that the ZI actively modulates the SWD magnitude and WT behavior.
-
Purkinje cells have specialized intrinsic ionic conductances that generate high-frequency action potentials. Disruptions of their Ca or Ca-activated K (KCa) currents correlate with altered firing patterns in vitro and impaired motor behavior in vivo. To examine the properties of somatic KCa currents, we recorded voltage-clamped KCa currents in Purkinje cell bodies isolated from postnatal day 17-21 mouse cerebellum. ⋯ In current clamp, EBIO slowed spiking, especially during depolarizing current injections. The two components of BK current in Purkinje somata likely contribute differently to spike repolarization and firing rate. Moreover, augmentation of BK current may partially underlie the action of EBIO and chlorzoxazone to alleviate disrupted Purkinje cell firing associated with genetic ataxias.
-
Corneal primary afferent neurons that respond to drying of the ocular surface have been previously characterized and found to respond to innocuous cooling, menthol, and hyperosmotic stimuli. The purpose of the present study was to examine the receptive field properties of second-order neurons in the trigeminal nucleus that respond to drying of the ocular surface. Single-unit electrophysiological recordings were performed in anesthetized rats, and dry-responsive corneal units were isolated in the brain stem at the transition zone between the spinal trigeminal subnucleus caudalis and subnucleus interpolaris. ⋯ Furthermore, neurons that were activated by low pH had a significantly lower response to cooling and menthol. These results indicate that dry-responsive neurons recorded in the trigeminal nucleus receive input from cold, sensitive primary afferent neurons, with a subset of these neurons receiving input from corneal primary afferent neurons sensitive to acid and noxious heat. It is proposed that acid-insensitive corneal neurons represent a labeled line for lacrimation in response to evaporation of tears from the ocular surface, whereas acid-sensitive neurons are involved in tearing, elicited by damaging or potentially damaging stimuli.
-
The purpose of this study was to determine if quipazine, a serotonergic agonist, differentially modulates flexor and extensor motor output. This was achieved by examining the monosynaptic reflex (MSR) of the tibial (extensor) and peroneal (flexor) nerves, by determining the basic and rhythmic properties of extensor and flexor motoneurons, and by recording extracellular Ia field potentials of the tibial and peroneal nerves in the in vivo adult decerebrate rat in both spinal intact and acute spinalized preparations. In the spinal intact preparation, the tibial and peroneal MSR amplitude significantly increased compared with baseline in response to quipazine, with no difference between nerves (P < 0.05). ⋯ Both the tibial and peroneal nerve extracellular Ia field potentials increased with the peroneal demonstrating a significantly greater increase (7 vs. 38%; P < 0.05) following quipazine. It is concluded that in the spinal intact preparation quipazine does not have a differential effect on flexor or extensor motor output. However, in the acute spinalized preparation, quipazine preferentially affects the flexor MSR compared with the extensor MSR, likely due to the removal of a descending tonic inhibition on flexor Ia afferents.
-
The responsiveness of sensory neurons to muscle metabolites is altered under the conditions of insufficient limb blood supply in some diseases, such as peripheral artery disease. The purpose of this study was to examine ATP-induced current with activation of purinergic P2X subtypes P2X₃ and P2X₂/₃ in dorsal root ganglion (DRG) neurons of control limbs and limbs with 24 h of femoral artery occlusion using whole cell patch-clamp methods. Also, dual-labeling immunohistochemistry was employed to determine existence of P2X₃ expression in DRG neurons of thin-fiber afferents. ⋯ In addition, a rapid desensitization was observed in DRG neurons with transient currents, but not with sustained currents in control and occluded groups. Furthermore, results from immunofluorescence experiments show that femoral artery occlusion primarily augments P2X₃ expression within DRG neurons projecting C-fiber afferents. Overall, these findings suggest that 1) greater ATP-induced currents with activation of P2X₃ and P2X₂/₃ are developed when hindlimb arterial blood supply is deficient under ischemic conditions and 2) increased P2X₃ expression is largely observed in C-fibers of DRG neurons after hindlimb vascular insufficiency.