Journal of neurophysiology
-
Neuroimaging studies have demonstrated that the right temporoparietal junction (TPJ) is activated during detection of salient stimuli, including pain, in the sensory environment. Right TPJ damage more often produces spatial neglect than left TPJ damage. We recently reported a right lateralized system of white matter connectivity of the TPJ. ⋯ Dual regression revealed this network was more strongly connected with right TPJ than left TPJ. Seed-based functional connectivity analysis showed 1) negative connectivity the TPJ bilaterally with the "default mode network"; 2) positive connectivity of TPJ bilaterally with the salience/ventral attention network; 3) stronger connectivity between right TPJ compared with left TPJ with regions within the salience/ventral attention network and mid-insula, S2, and temporal/parietal opercula (implicated in pain); and 4) stronger connectivity of left TPJ compared with right TPJ with the "executive control network," including the dorsomedial/medial PFC, inferior frontal gyrus, and cerebellum (crus I/II). Our findings build on classic lesion and neuroimaging studies, demonstrating a complex spatial network organization of lateralization in TPJ functional connectivity in the absence of an overt stimulus.
-
The tyrosine kinases of Src family play an important role in the central sensitization following peripheral inflammation. However, whether the Src family in the arcuate nucleus (ARC) of mediobasal hypothalamus is involved in central sensitization remains unknown. The aim of this study was to investigate the role and mechanisms of tyrosine kinases of Src family in N-methyl-d-aspartate (NMDA) receptor activity in the ARC following peripheral inflammation. ⋯ Peripheral inflammation also increased the association of NR2B protein with p-Src protein in the ARC. Administration of PP2 blocked the upregulation of NR2B phosphorylation induced by CFA injection. Taken together, our present results suggest that the arcuate Src activation-induced tyrosine phosphorylation of NR2B NMDA subunit may contribute to inflammatory pain.
-
Mammalian peripheral cold thermoreceptors respond to cooling of their sensory endings with an increase in firing rate and modification of their discharge pattern. We recently showed that cultured trigeminal cold-sensitive (CS) neurons express a prominent hyperpolarization-activated current (I(h)), mainly carried by HCN1 channels, supporting subthreshold resonance in the soma without participating in the response to acute cooling. However, peripheral pharmacological blockade of I(h), or characterization of HCN1(-/-) mice, reveals a deficit in acute cold detection. ⋯ The firing pattern of nerve endings from HCN1(-/-) mice was also affected by ZD7288, which we attribute to the presence of HCN2 channels in the place of HCN1. Mathematical modeling shows that the firing phenotype of CS nerve endings from HCN1(-/-) mice can be reproduced by replacing HCN1 channels with the slower HCN2 channels rather than by abolishing I(h). We propose that I(h) carried by HCN1 channels helps tune the frequency of the oscillation and the length of bursts underlying regular spiking in cold thermoreceptors, having important implications for neural coding of cold sensation.
-
Respiratory depression is a therapy-limiting side effect of opioid analgesics, yet our understanding of the brain circuits mediating this potentially lethal outcome remains incomplete. Here we studied the contribution of the rostral ventromedial medulla (RVM), a region long implicated in pain modulation and homeostatic regulation, to opioid-induced respiratory depression. Microinjection of the μ-opioid agonist DAMGO in the RVM of lightly anesthetized rats produced both analgesia and respiratory depression, showing that neurons in this region can modulate breathing. ⋯ Concurrent recording of RVM neurons during improgan microinjection showed that this agent activated RVM ON-cells, OFF-cells, and NEUTRAL-cells. Since opioids are known to activate OFF-cells but suppress ON-cell firing, the differential respiratory response to these two analgesic drugs is best explained by their opposing effects on the activity of RVM ON-cells. These findings show that pain relief can be separated pharmacologically from respiratory depression and identify RVM OFF-cells as important central targets for continued development of potent analgesics with fewer side effects.
-
Life-threatening side effects such as profound bradypnea or apnea and variable upper airway obstruction limit the use of opioids for analgesia. It is yet unclear which sites containing μ-opioid receptors (μORs) within the intact in vivo mammalian respiratory control network are responsible. The purpose of this study was 1) to define the pontine region in which μOR agonists produce bradypnea and 2) to determine whether antagonism of those μORs reverses bradypnea produced by intravenous remifentanil (remi; 0.1-1.0 μg·kg(-1)·min(-1)). ⋯ The DAMGO-sensitive region extended from 5 to 7 mm lateral of midline and from 0 to 2 mm caudal of the inferior colliculus at a depth of 3-4 mm. During remi-induced bradypnea (~72% reduction in fictive breathing rate) NAL microinjections (~500 nl each) within the region defined by the DAMGO protocol were able to reverse bradypnea by 47% (SD 48.0%) per microinjection, with 13 of 84 microinjections producing complete reversal. Histological examination of fluorescent microsphere injections shows that the sensitive region corresponds to the parabrachial/Kölliker-Fuse complex.