Journal of neurophysiology
-
To account for benzodiazepine-induced spinal analgesia observed in association with an inflammation-induced shift in the influence of the GABA(A) receptor antagonist gabazine on nociceptive threshold, the present study was designed to determine whether persistent inflammation is associated with the upregulation of high-affinity GABA(A) receptors in primary afferents. The cell bodies of afferents innervating the glabrous skin of the rat hind paw were retrogradely labeled, acutely dissociated, and studied before and after the induction of persistent inflammation. A time-dependent increase in GABA(A) current density was observed that was more than twofold by 72 h after the initiation of inflammation. ⋯ Genistein reversal was partially blocked by the dynamin inhibitor peptide P4. Changes in nociceptive threshold following spinal administration of genistein and muscimol to inflamed rats indicated that the pronociceptive actions of muscimol observed in the presence of inflammation were reversed by genistein. These results suggest that persistent changes in relative levels of tyrosine kinase activity following inflammation provide not only a sensitive way to dynamically regulate spinal nociceptive signaling but a viable target for the development of novel therapeutic interventions for the treatment of inflammatory pain.
-
Skeletal muscle is a well-known source of glial cell line-derived neurotrophic factor (GDNF), which can produce mechanical hyperalgesia. Since some neuromuscular diseases are associated with both increased release of GDNF and intense muscle pain, we explored the role of GDNF as an endogenous mediator in muscle pain. Intramuscularly injected GDNF induced a dose-dependent (0.1-10 ng/20 μl) persistent (up to 3 wk) mechanical hyperalgesia in the rat. ⋯ Intrathecal antisense oligodeoxynucleotides to mRNA encoding GFRα1, the canonical binding receptor for GDNF, reversibly inhibited eccentric exercise- and mechanical vibration-induced muscle hyperalgesia. Finally, electrophysiological recordings from nociceptors innervating the gastrocnemius muscle in anesthetized rats, revealed significant increase in response to sustained mechanical stimulation after local GDNF injection. In conclusion, these data indicate that GDNF plays a role as an endogenous mediator in acute and induction of chronic muscle pain, an effect likely to be produced by GDNF action at GFRα1 receptors located in IB4(+) nociceptors.
-
An essential component of mechanical hyperalgesia resulting from tissue injury is an enhanced excitability of nociceptive neurons, termed mechanical sensitization. Local application of opioids to inflamed rat paws attenuates mechanical hyperalgesia and reduces electrical excitability of C-fiber nociceptors in acute injury. Here, we examined the effects of the opioid receptor agonist fentanyl on the mechanical coding properties of not only C- but also A-fiber nociceptors innervating the rat hind paw in a model of chronic pain, i.e., 4 days after Freund's complete adjuvant-induced inflammation. ⋯ Our results demonstrate that mechanical sensitization persists in chronic inflammation, in correlation with behavioral hyperalgesia. Opioid sensitivity of both A- and C-fibers is markedly augmented. This is consistent with an upregulation or enhanced functionality of opioid receptors located at the peripheral terminals of sensitized nociceptors.
-
Independent control of finger movements characterizes skilled motor behaviors such as tool use and musical performance. The purpose of the present study was to identify the effect of movement frequency (tempo) on individuated finger movements in piano playing. Joint motion at the digits was recorded while 5 expert pianists were playing 30 excerpts from musical pieces with different fingering and key locations either at a predetermined normal tempo or as fast as possible. ⋯ A linear regression analysis determined no apparent difference in the amount of movement covariation between the striking and nonstriking fingers at both metacarpo-phalangeal and proximal-interphalangeal joints across the two tempi, which indicated no effect of tempo on independent finger movements in piano playing. In addition, the standard deviation of interkeystroke interval across strokes did not differ between the two tempi, indicating maintenance of rhythmic accuracy of keystrokes. Strong temporal constraints on finger movements during piano playing may underlie the maintained independent control of fingers over a wider range of tempi, a feature being likely to be specific to skilled pianists.
-
High-frequency conditioning electrical stimulation (HFS) of human skin induces an increased pain sensitivity to mechanical stimuli in the surrounding nonconditioned skin. The aim of this study was to investigate the effect of HFS on reported pain sensitivity to single electrical stimuli applied within the area of conditioning stimulation. We also investigated the central nervous system responsiveness to these electrical stimuli by measuring event-related potentials (ERPs). ⋯ In contrast, we observed enhanced ERP amplitudes after HFS at the conditioned skin site, compared with control site, in response to the single electrical test stimuli. Recently, it has been proposed that ERPs, at least partly, reflect a saliency detection system. Therefore, the enhanced ERPs might reflect enhanced saliency to potentially threatening stimuli.